摘要 用户对人工智能 (AI) 系统的信任已得到越来越多的认可,并被证明是促进采用的关键因素。有人提出,支持人工智能的系统必须超越以技术为中心的方法,转向以人为本的方法,这是人机交互 (HCI) 领域的核心原则。本评论旨在概述 23 项实证研究中的用户信任定义、影响因素和测量方法,以收集未来技术和设计策略、研究和计划的见解,以校准用户与人工智能的关系。研究结果证实,定义信任的方法不止一种。选择最合适的信任定义来描述特定环境中的用户信任应该是重点,而不是比较定义。研究发现,用户对人工智能系统的信任受到三个主要主题的影响,即社会伦理考虑、技术和设计特征以及用户特征。用户特征在研究结果中占主导地位,强调了从开发到监控人工智能系统的过程中用户参与的重要性。研究还发现,用户和系统的不同环境和各种特征也会影响用户信任,强调了根据目标用户群的特征选择和定制系统功能的重要性。重要的是,社会伦理考虑可以为确保用户与人工智能互动的环境足以建立和维持信任关系铺平道路。在衡量用户信任方面,调查是最常用的方法,其次是访谈和焦点小组。总之,在使用或讨论支持 AI 的系统的每个情况下,都需要直接解决用户信任问题。此外,校准用户与 AI 的关系需要找到不仅对用户而且对系统都适用的最佳平衡。
主要关键词