摘要 用户对人工智能 (AI) 系统的信任已越来越多地得到认可,并被证明是促进采用的关键要素。有人提出,人工智能系统必须超越以技术为中心的方法,走向以人为本的方法,这是人机交互 (HCI) 领域的核心原则。本综述旨在概述 23 项实证研究中的用户信任定义、影响因素和测量方法,以收集未来技术和设计策略、研究和计划的见解,以校准用户与人工智能的关系。研究结果证实,定义信任的方法不止一种。重点应该是选择最合适的信任定义来描述特定环境中的用户信任,而不是比较定义。研究发现,用户对人工智能系统的信任受到三个主要主题的影响,即社会伦理考虑、技术和设计特征以及用户特征。用户特征在研究结果中占主导地位,强调了用户参与从开发到监控人工智能系统的重要性。研究还发现,不同环境以及用户和系统的各种特征都会影响用户信任,这凸显了根据目标用户群的特征选择和定制系统功能的重要性。重要的是,社会伦理考虑可以为确保用户与人工智能互动的环境足以建立和维持信任关系铺平道路。在衡量用户信任方面,调查是最常用的方法,其次是访谈和焦点小组。总之,在使用或讨论人工智能系统的每一个环境中,都需要直接解决用户信任问题。此外,校准用户与人工智能的关系需要找到不仅对用户而且对系统都适用的最佳平衡点。
心理层面上的简易安全性逐渐享誉为心理健康问题和心理健康的基础。Stephen Porges(2011)提出的基于多价理论的安全概念已成为理解自主神经系统在调节社会行为,情感处理和生理反应中的作用的全面结构。本综述旨在探索多相理论在理解精神疾病中的应用,重点是自主神经系统失调如何影响情绪和行为表现,从而有助于发展有效的治疗干预措施,旨在增强患有精神病患者的安全性和福祉的有效治疗干预措施。将基于PRISMA模型的系统文献审查技术用于此目的。来源是通过PubMed,Apa Psycarticles,PLOS,Research Gate,Google Scholar和PubMed Central(PMC)数据库获得的,使用不同的关键词作为主要描述符,并将其限制为从2013年至2023年至2023年发表的英语文章中的来源。综述了来自各种研究的研究结果,这些研究调查了多个多相理论与精神疾病之间的关联,包括焦虑症,抑郁症,精神病,精神病,创伤后应激障碍(PTSD),边缘性人格障碍以及儿童期疾病以及包括行为障碍,注意力缺陷多动态障碍(ADHD)和自动障碍(以及自动化障碍(以及自动障碍)(以及Assism spectrum spectrum spectrim spectrum spectrum spectrum spectrim)(以及Assiss spectrum spectrim spectrum)结果表明,患有这些精神疾病的人经常表现出自主神经系统失调,正如多个多相理论所提出的那样,这似乎是许多精神疾病中的共同特征。系统评价强调了心理健康的生理方面的重要性,并表明着重于自主法规的干预措施可能会增加与精神疾病有关的基本症状。其他研究工作是可以辩护的,以阐明主要机制并改善基于多相理论的干预措施的含义,以获得更好的临床结果。
结论:尿道憩室癌是尿道的一种罕见且高度侵略性的恶性肿瘤,预后不良。隐藏了尿道憩室癌的发作,其临床表现是非专业和多样的。术前诊断具有挑战性,成像研究和膀胱镜检查是尿道憩室癌的主要术前诊断方法。病理学和免疫组织化学是确认诊断的基础。目前,国际上没有针对女性尿道憩室癌的统一治疗方案。对于没有远处转移的尿道憩室癌的女性患者,手术仍然是主要治疗方法。对于远处转移的患者,可以考虑手术,化学疗法和放射疗法的组合。基因测试和靶向免疫疗法为将来的治疗提供了新的方法。
自然语言处理(NLP)和机器学习(ML)领域的最新发展已显示自动文本处理的显着改进。同时,人类语言的表达在发现心理健康问题中起着核心作用。虽然口语在接受患者的访谈中被隐式评估,但书面语言也可以为临床专业人员提供有趣的见解。现有的工作中经常研究心理健康问题,例如抑郁或焦虑。然而,还在研究饮食失调的诊断如何从这些新技术中受益。在本文中,我们介绍了该领域最新研究的系统概述。Our investigation encompasses four key areas: (a) an analysis of the metadata from published papers, (b) an examination of the sizes and speci fi c topics of the datasets employed, (c) a review of the application of machine learning techniques in detecting eating disorders from text, and fi nally (d) an evaluation of the models used, focusing on their performance, limitations, and the potential risks associated with current methodologies.
弗吉尼亚州阿灵顿市 22204-2490 案卷编号 529-24 编号:签名日期发件人:海军记录修正委员会主席致:海军部长主题:审查美国海军 XXX-XX- 号海军记录编号:(a) 美国法典第 10 章第 1552 节(b) USD 备忘录,2017 年 8 月 25 日(Kurta 备忘录)(c) USECDEF 备忘录,2018 年 7 月 25 日(Wilkie 备忘录)(d) PDUSD 备忘录,2024 年 4 月 4 日(Vazirani 备忘录)(e) 申请人的案件文件附件:(1) DD 表格 149(2) 咨询意见,2024 年 6 月 13 日 1. 根据参考 (a) 的规定,申请人(以下简称申请人)向海军记录修正委员会(委员会)提交了附件 (1),请求通过准予医疗退休来更正他的海军记录。2. 委员会由、和组成,于 2024 年 8 月 1 日审查了申诉人的错误和不公正指控,并根据其规定,确定应根据现有的记录证据采取下文指出的纠正措施。委员会考虑的文件材料包括附件、海军记录的相关部分以及适用的法规、法规和政策,包括参考文献 (b) 至 (d) 和附件 (2),即合格医疗专业人员提供的咨询意见 (AO)。该 AO 被认为对申诉人有利。3. 委员会审查了与申诉人的错误和不公正指控有关的所有记录事实后,发现如下:a. 在向本委员会提出申请之前,申诉人已用尽海军部现行法律和法规规定的所有可用行政补救措施。尽管请愿人没有及时提出申请,但根据《库尔塔备忘录》,诉讼时效已被免除。
结果:共发现 4230 篇有关病毒和神经炎症的文章和评论,随着时间的推移呈现持续上升趋势。美国是贡献出版物最多的国家。来自 4474 个机构的约 22274 名作者参与了这项研究。约翰霍普金斯大学的出版物和引用量最高。该领域发表文章最多的前三位作者分别是 Power, C.、Lane, TE 和 Buch, S。《神经炎症杂志》是研究人员最权威的选择。该领域的主要研究重点包括多发性硬化症、帕金森病、血脑屏障、COVID-19、阿尔茨海默病、基因治疗。近年来,压力成为热门关键词,特别是抑郁症、人类免疫缺陷病毒相关神经认知障碍、血脑屏障、肠道微生物群相关方向,预示着研究重点可能会发生转变。
相关的关键发现: - 自动化技术取代了人工劳动,可能会减少劳动力需求,工资和就业(第198-201页)。这种位移效应可以使每个工人的工资和产出分离,从而导致劳动力占国民收入的份额下降(第198页)。- 虽然自动化的生产率提高,但它们可能并不总是抵消工作损失(第202-205页)。创建新任务是一项至关重要的平衡力,但是不能保证这个过程,并且可能落后于自动化,这可能会导致整体生产率增长速度较慢(第205-207、210-211、223-224页)。- 由于工人重新分配和技能不匹配所需的时间,自动化技术的引入会导致经济调整缓慢(第199,208-209页)。这种不匹配可以降低生产率的提高并加剧不等式(第221-223页)。由资本补贴等因素驱动的过度自动化也可能会阻碍生产率(第210-211,224-226页)。- 新任务的创建是反对自动化负面影响的重要反击力(第205-207、217-218页)。但是,新任务的发展需要投资,并且可以以其他技术进步为代价来阻碍自动化(第223-224页)。- AI可能无法取代所有人类劳动,因为其当前的应用集中在特定的,定义明确的任务上(第207页)。但是,新任务和工人技能要求之间的技能不匹配可以大大减慢适应性(第221-223页)。- 公司应预期技能不匹配并投资于培训计划,以帮助员工适应自动化创建的新任务(第223页)。通过政策调整来解决过度自动化并促进创建新的,劳动力密集的任务可以减轻对工人的负面影响(第224-226页)。
相关的关键发现: - 诊断错误每年影响超过1200万美国人,耗资超过1000亿美元(第5、15页)。- 基于AI的技术提供了诸如较早的疾病检测,更一致的数据分析和改善患者的访问效果(第10、11、12页)。- 几种ML技术有助于诊断癌症,糖尿病性视网膜病,阿尔茨海默氏病,心脏病和Covid -19。这些工具主要使用图像数据(X射线,MRI等),但不像其他数据类型一样(第11、12页)。- 美国大多数主要医疗中心使用了一种心电图监测技术,而另一种Covid -19检测技术仅在少数大学和研究机构中使用(第6页)。- ML诊断技术尚未看到广泛采用(第14页)。- 公司报告采用水平的不同;一种ECG技术被广泛使用,而Covid-19的另一种则仅限于研究(第6、14页)。- 医疗提供者通常会犹豫采用ML技术,直到现实世界的绩效得到很好的表现为止(第6、23页)。- 三种新兴方法是自主,适应性和面向消费者的ML诊断(第17页)。- 自适应ML,使用新的患者数据更新算法,可能会提高准确性,但也可能导致不一致的性能(第17-19页)。- 自主系统可以降低成本,提高能力并提高准确性,但是它们的创造和采用可能很困难(第18-19页)。- 面向消费者的工具提供了增加的患者访问和更广泛的数据收集,但也需要采取其他步骤来确保适当的结果(第21-22页)。- 采用ML的挑战包括在各种临床环境中展示现实世界的表现,确保技术满足实际的医疗需求,并在现有的监管框架中弥合差距(第23-27页)。- 研究表明,在临床部位之间的性能可能会有很大的不同,从而强调了对特定地点验证的需求(第23-24页)。- 关于算法验证和采用技术的监管差距,特别是对于具有适应性能力的人(第26、33页)。- 解决这些挑战的政策选择包括激励对ML技术的评估,扩大对高质量数据的访问以及促进开发人员,提供者和监管机构之间的协作(第28-31页)。
肠道分子对于人体来说是必不可少的。据估计,我们体内的微生物共同占人类细胞数量的十倍(Qin等,2010)。最近的证据强烈表明,这些微生物的功能几乎像额外的器官,积极参与塑造和维持我们的生理学(Qi等,2021)。肠道微生物群在调节激素水平,对宿主激素的反应甚至产生其激素方面起关键作用(Sudo,2014年)。因此,它被认为是完全闪烁的内分泌器官,其作用范围延伸至遥远的器官和途径(Qi等,2021)。微生物群和激素之间的复杂关系对健康,行为,代谢,免疫和繁殖的各个方面具有深远的影响(Neuman等,2015)。健康的肠道微生物群由6个门组成,包括富公司,细菌植物,肌动杆菌,proteeobacteria,fusobacteria和verrucomicrobia(Crudele等,2023; Hamjane et al。,2024)。两个门的富公司和细菌剂占肠道菌群的90%(Hamjane等,2024)。菌群组成的变化会显着影响健康。这些变化可以在原因或后果的背景下进行评估。然而,不可否认的是,肠道菌群与我们身体的系统协同作用,以深刻影响健康。微生物群和激素之间的相互作用是双向的。在William的评论中所证明的是,激素具有直接影响菌群多样性和组成的能力,而相反,微生物群可以调节激素的产生并介导激素功能(Williams等,2020)。肠道菌群的组成因性激素,下丘脑 - 垂体 - 肾上腺(HPA)轴和胰岛素的失调,喂养行为和肥胖(Yoon and Kim,2021; Farzi et al。,2018; Kelly et al。,2018; Kelly et al。,2015; rusch et;肠道菌群通过与胰岛素,生长素素和GLP-1等激素相互作用,在调节喂养行为和代谢中起关键作用(Williams等,2020)。研究肠道菌群与肥胖之间关系的研究解释了肠道微生物群可以改变宿主代谢以及不疾病的肠道肠菌群在肥胖发展中的作用(Qi等,2021; Angelakis等,2012; Everard et el。,Everard等,2013; Everard等,2013)。肠道菌群产生的数十种代谢产物会影响能量调节和胰岛素敏感性(Qi等,2021;Wahlström等,2016)。代谢物,例如短链脂肪酸(SCFA)和胆汁酸在代谢综合征的中心病理中起重要作用,例如胰岛素抵抗;这些代谢物是影响能量平衡和胰岛素敏感性的肠道菌群的产物(Wahlström等,2016; Den Besten等,2015)。此外,抗糖尿病药物通过促进负责SCFA产生的微生物群生长,从而对丁酸酯和丙酸酯的水平产生积极影响。了解肠道细菌代谢物在内分泌疾病发展中的各种影响对于发现针对代谢疾病的新靶标和新药的发展至关重要。这些微生物群驱动的效应的潜力是深刻的,需要进一步研究其基础。
