摘要。海面温度 (SST) 在分析和评估天气和生物系统的动态方面起着重要作用。它有各种应用,例如天气预报或沿海活动规划。一方面,用于预测 SST 的标准物理方法使用基于 Navier-Stokes 方程的耦合海洋-大气预测系统。这些模型依赖于多个物理假设,并且不能最佳地利用数据中可用的信息。另一方面,尽管有大量数据可用,但直接应用机器学习方法并不总能产生具有竞争力的最新结果。另一种方法是将这两种方法结合起来:这就是数据模型耦合。本文的目的是在另一个领域使用模型。该模型基于数据模型耦合方法来模拟和预测 SST。我们首先介绍原始模型。然后,描述修改后的模型,最后得到一些数值结果。
用于微分方程求解、数据处理和机器学习的量子算法可能比所有已知的经典算法提供指数级加速。然而,在有用的问题实例中获得这种潜在加速也存在障碍。量子微分方程求解的基本障碍是输出有用信息可能需要困难的后处理,而量子数据处理和机器学习的基本障碍是输入数据本身就是一项艰巨的任务。在这项研究中,我们证明了,当结合起来时,这些困难可以相互解决。我们展示了量子微分方程求解的输出如何作为量子数据处理和机器学习的输入,从而允许在主成分、功率谱和小波分解方面进行动态分析。为了说明这一点,我们考虑了流行病学和社会网络上的连续时间马尔可夫过程。这些量子算法比现有的经典蒙特卡罗方法具有指数级优势。
摘要。我们通过进一步研究我们之前工作中的量子簇代数方法,构造了四面体方程的新解。关键要素包括连接到 A 型 Weyl 群最长元素接线图的对称蝴蝶箭筒,以及通过 q-Weyl 代数实现量子 Y 变量。该解决方案由四个量子双对数的乘积组成。通过探索坐标和动量表示及其模数双反,我们的解决方案涵盖了各种已知的三维 (3D) R 矩阵。其中包括 Kapranov–Voevodsky (1994) 利用量化坐标环获得的矩阵、从量子几何角度获得的 Bazhanov–Mangazeev–Sergeev (2010)、与量化六顶点模型相关的 Kuniba–Matsuike–Yoneyama (2023) 以及与 Fock–Goncharov 箭筒相关的 Inoue–Kuniba–Terashima (2023)。本文提出的 3D R 矩阵为这些现有解决方案提供了统一的视角,并将它们合并在量子簇代数的框架内。
神经网络在学习和控制方面表现出了巨大的力量,尤其是在学习动力学和预测动态系统的行为方面[1],[2]。在学习和控制社区近似动态行为时,尤其是稳定性和被动性时,就会有利于稳定性和被动性。执行稳定性可以使学习模型受益,尤其是在概括方面。对于非线性系统,在[3],[4],[5]中使用高斯混合模型和多个数字模型研究了学习过程中的稳定性,甚至在线性系统的情况下,它是非平凡的[6]。对于非线性系统,存在各种稳定概念,其影响不同。在学习的背景下,一个称为Contaction [7](任何一对轨迹相互收敛)的强稳定性概念最近由于其平衡 - 独立的稳定性性质而受到了很多关注。对于离散时间设置,[8],[9],[10]已经开发了收缩,逐渐被动和耗散性神经动力学。在[11]中可以找到连续的时间对应物。[9],[11]的好处是他们的直接(即稳定模型的参数化参数化,使培训变得容易。但是,一个限制是它们在国家独立的二次度量标准方面执行收缩,从而限制了灵活性。用于学习稳定性弱的动态系统(例如,Lyapunov稳定性W.R.T.特定的平衡)通常需要应用保留相似稳定性特性的模型。稳定神经差异方程的关键成分是神经Lyapunov功能。从[12]和佩雷尔曼(Perelman)[13]的庞加罗猜想分辨率,所有lyapunov函数均具有对单位球的同型集合。这建议搜索候选Lyapunov
摘要:首次考虑具有恒定延迟的非线性Schrödinger方程。这些方程是具有立方非线性的经典schrödinger方程的概括,而更复杂的非线性schrödinger方程包含功能任意性。从物理的角度来看,考虑了数学物理学非线性方程延迟出现的可能原因。为了构建精确的解决方案,使用了相关方程解的结构类比。获得了具有延迟的非线性schrödinger方程的新精确解,这些方程在基本函数或四函数中表示。还发现了一些具有广义分离变量的更复杂的解决方案,这些解决方案是通过普通微分方程的混合系统描述的,而无需延迟或延迟的普通微分方程。这项工作的结果对于开发具有延迟的非线性schrödinger方程所描述的新数学模型可能很有用,并且给定的精确解决方案可以作为旨在评估数值方法准确性的测试问题的基础,以评估非线性偏差方程与延迟集成非线性偏差方程。
核物质在密度下的状态方程(EOS)几次,正常核物质密度最近引起了人们的注意,因为它影响了中子星和中子恒星合并的正常,而后者现在由重力波干涉仪探测,请参见E.G.[1,2]。EOS的独立约束是由在e Kin〜0范围内进行的重型离子碰撞实验实验提供的。1至实验室框架中的每个核子(GEV)的几个GEV [3-5]。通过比较测量的集体流数据和转移模型计算,在过去几十年中实现了一系列约束,请参见例如[6 - 9]。使用
尽管在另一个课程中涵盖了用于集成微分方程的数值方案的全部覆盖范围,但专门的课程是启发性的,以介绍数值集成商的使用并学习Python中的语法以运行这些算法。特别是在本讲座中,我们将练习如何使用Python库Scipy.integrate对非线性ODES系统进行编码。tihs课程主要集中在基本面和分析技术上,但是关注数值方法将很有用,因为在实践中,这是我们最终在所有实际情况中最终使用的。我们将使用jupyter笔记本进行本课程,而重点并不是了解数值集成方法如何工作,而是能够使用它们。
It is with great pleasure we invite researchers, academicians, health professionals, and those who are all involved in Environmental and Health related facets desire to be part of the "International Conference on Environmental and Molecular Mutagenesis: Genomic Integrity And Implications to Human Health" as well as “47 th Annual Meeting & Golden Jubilee Year of Environmental Mutagen Society of India (EMSI)” to be convened at Annamalai University, Chidambaram,泰米尔纳德邦,印度1月29日至31日,2025年。EMSI成立于1975年,促进了诱变的科学教育和研究。社会是国际环境诱变与基因组学协会(IAEMGS)和亚洲环境诱变学会(AEMS)的关联。每年,EMSI会议都会提供一个科学论坛,用于在实验和临床水平上交换有关诱变的想法和信息,重点是人类健康和环境安全。社会在2025年完成了50年;因此,这次会议将庆祝社会的“黄金禧年”,特别强调人类健康。
适用于(6)的适当定期解决方案。再次,进化仅限于“ submanifold” =∂⊂rd:| | = M,其中包含体积构成。takasao在非常温和的假设下表明(1) - (2)在Brakke的意义上将(1) - (2)融合到弱溶液的平均曲率流量[3];环境尺寸的第一个d = 2,3 [20],最近,在所有维度上的略微触发(1) - (2)[21]。另一种方法受到勒克豪斯和Sturzenhecker [16]的工作的启发:第二作者和Simon [14]表明,在[16]中,在自然能量的假设下,限制是对体积预留平均曲率流量的分布解决方案,在所有空间尺度中都可以使用多个阶段的阶段。为了证明我们,我们使用相对能量法。在阶段场模型的收敛性背景下,这种方法是由[5]中的Fischer,Simon和第二作者引入的,但是相对能量与Simon和Simon和[14]中的第二作者引入的弥漫性倾斜度非常紧密相关。也可以用来合并边界接触,如Hensel和Moser [9]和Hensel以及第二作者[8]所示。由于该方法不依赖最大原则,因此它也可以用于矢量问题。liu和第二作者[13]将相对的能量与convergendergencemethodstoderivethescalingscalingscalinglimitoftransitions在液晶中的各向同性和列相之间。fischer和marveggio [6]表明,该方法也可以用于矢量allen -cahn方程,至少在环境尺寸d = 2、3中,以及带有三个井的原型电势。thenlocalallen – cahnequationishysphysphysimitigatedModel,这是尖锐的界面极限。,但也可以将其视为一种近似方案(在数值或理论上)解决方案以保留平均曲率流量。构建解决方案的其他方法包括可在短时间内使用的PDE方法[4]; Almgren,Taylor和Wang [1]的最小化运动方案的版本,以及Mugnai,Seis和Spadaro [18]的第一版,后来由Julin和Julin和Niinikoski [10]进行。阈值方案在数值上也有效,请参见Swartz和第二作者的工作[15]。
摘要:这项研究研究了游戏化技术的影响,包括Kahoot!,Classcraft和Badgeville,对在线学习环境中学习有效性和享受的学习者动机,参与度以及对学习者的看法。采用定量研究方法,该研究利用结构方程建模(SEM)来分析游戏化元素与学习者结果之间的关系,并由自决理论(SDT)构建。从对跨Varis领域的169名学术界进行的调查收集的数据表明,游戏化技术(例如排行榜,徽章,点系统和挑战)可以显着增强学习者的参与度,平均观察到25%的人。奖励,激励措施和竞争性挑战都提高了内在动机和外在动机,从而提高了30%的学习者表现。尽管对游戏化对学习有效性的影响有轻微的负面看法,但感知到的享受增长了20%,这突显了其整体积极影响。知识保留显着影响学习者的参与,感知的学习效率和享受,其相关系数在保留率和参与度之间为0.65。这些发现强调了平衡竞争要素以优化动力,有效性和享受的重要性,同时保持支持性学习环境。该研究为设计游戏化的电子学习环境提供了可行的建议,这些环境有效地整合了游戏化元素以增强参与,动机和知识的保留,为旨在创造参与有效的在线学习经验的教育工作者提供了基于证据的指导。