Roman Römisch、Stefan Jestl 和 Ambre Maucorps 是维也纳国际经济研究所 (wiiw) 的经济学家。本文的研究由奥地利国民银行周年基金资助(项目编号 17796)。衷心感谢奥地利国民银行为本研究提供的支持。
该文件是应欧洲议会农业与农村发展委员会的要求编写的。作者:INRAE 和 IDDRI; Hervé GUYOMARD、Marlène STICKEL、Cécile DETANG-DESSENDRE、Louis-Georges SOLER、Pierre-Marie Aubert、Alain CARPENTIER、Aurélie CATALLO、Pierre DUPRAZ、Carl GAIGNE、Elsa REGNIER、Sophie THOYER 研究管理员:François NEGRE 项目、出版和传播协助:Jana BERGMAN、Stephanie DUPONT、Iveta OZOLINA 政策部、区域发展、农业和渔业局 语言版本 原文:EN 关于出版商 如需联系政策部或订阅我们为 AGRI 委员会所做的工作的最新消息,请写信至:Poldep-cohesion@ep.europa.eu 手稿于 2024 年 12 月完成 © 欧盟,2024 本文件摘要可在互联网上获取,也可在以下网址下载全文: https://bit.ly/3PJ10Yy 本文件可在互联网上获取: https://www.europarl.europa.eu/RegData/etudes/STUD/2025/759316/CASP_STU(2025)759316_EN.pdf 有关政策部门针对 AGRI 的研究的更多信息,请访问:https://research4committees.blog/agri/ 在 Twitter 上关注我们:@PolicyAGRI 请使用以下参考文献引用本研究:Guyomard H.、Stickel M.、Détang-Dessendre C.、Soler L.-G.、Aubert P.-M.、Carpentier A.、Catallo A.、Dupraz P.、Gaigné C.、Régnier E.、Thoyer S. (2024),针对 AGRI 委员会的研究 - CAP 的下一次改革:方程中的变量。欧洲议会,布鲁塞尔地区发展、农业和渔业政策局政策部。请使用以下参考文献进行文内引用:Guyomard 等人 (2024) 免责声明 本文件中表达的观点仅代表作者本人,并不一定代表欧洲议会的官方立场。允许出于非商业目的进行复制和翻译,但必须注明来源并提前通知出版商并发送副本。
在本文中,我们提出了一种可扩展的算法易于故障的计算机,用于在两个和三个空间维度中求解传输方程,以用于可变网格尺寸和离散速度,其中对象壁与笛卡尔网格,与笛卡尔电网相关,每个变化的veer veel veel的相对差异均与裁缝相关范围。我们提供了量子传输方法(QTM)的所有步骤的详细描述和复杂性分析,并为Qiskit中生成的2D流的数值结果作为概念证明。我们的QTM基于一种新型的流媒体方法,该方法可与先进的量子流方法相比,导致减少CNOT门的数量。作为本文的第二个亮点,我们提出了一种新颖的对象编码方法,该方法降低了编码墙壁所需的CNOT门的复杂性,该墙壁现在变得独立于墙壁的大小。最后,我们提出了粒子离散速度的新型量子编码,该量子能够以反映粒子速度的成本进行线性加速,现在它变得独立于编码的速度量。我们的主要贡献包括详细描述量子算法的故障安全实现,用于转移方程的反射步骤,可以在物理量子计算机上容易实现。这种故障安全实现允许各种初始条件和粒子速度,并导致墙壁,边缘和障碍物的颗粒流动行为在物理上纠正粒子流动行为。
https://www.epa.gov/air-emissions-inventories/national-emissions-inventory-nei。2 有关源分类代码的更多信息,请参阅 https://sor-scc-api.epa.gov/sccwebservices/sccsearch/。3 此计数和相关百分比基于 2023 年 4 月 28 日版本的 CMDB。一些控制措施缩写(例如 NSCR_UBCT1、NSCR_UBCT2、NSCR_UBCT3、NSCR_UBCT4 和 NSCR_UBCT5)是应用于相同类型源的相同控制技术,但反映了容量限制。同样,其他控制缩写(例如 PESPIPSIZE1、PESPIPSIZE5 和 PESPIPSIZE10)是相同的控制技术,但根据 SCC 的平均粒径应用于不同的 SCC。为了计算此计数和百分比,这些控制措施缩写组均被视为单一控制措施。
线性时间逻辑(LTL)目标的替代奖励通常用于LTL目标的计划问题。在广泛的替代奖励方法中,使用两个折现因素来确保预期收益近似于LTL目标的满意度。可以通过使用Bellman更新(例如增强学习)来估算预期的回报。但是,尚未明确讨论对贝尔曼方程的唯一性,并没有明确讨论两个折扣因素。我们证明了一个示例,即当将折扣因子之一设置为一个,如许多先前的作品中所允许的时,Bellman方程可能具有多个解决方案,从而导致对预期收益的评估不准确。然后,我们提出了一个条件,使钟手方程将预期的回报作为独特的解决方案,要求在拒绝底部连接的组件(BSCC)内的状态解决方案为0。我们证明这种情况是有足够的,可以证明具有折扣的州的解决方案可以与国家的解决方案分开而无需在这种情况下打折。关键字:马尔可夫链,极限确定性b - uchi automaton,可及性,b - uchi条件
相对于Navier -Stokes缩放(2)并不是不变的,但由于存在对数分母,因此略微临界7。也让我们提到,在Tao的论文[47]之前,在存在轴向对称性的情况下,在[34]中获得了不同的略微超临界性标准。我们目前的论文的贡献是todevelopanewstrategy的估计值(请参见命题2.1和2.2),以了解Navier-Stokes方程,然后使我们能够在Tao的工作[47]基于量化关键规范的基础上构建。我们的第一个定理涉及在下面的命题2.1中规定的浓度的向后传播,以提供新的必要条件,以使Navier-Stokes方程具有I型I型爆炸。在t ∗处的I型爆炸的情况下,(2)中的非线性与扩散均具有启发性。尽管如此,无论是否可以在M大时排除I型爆炸,这仍然是一个长期的开放问题。现在让我们陈述我们的第一个定理。
图2:介电函数的假想部分ε2(ω),作为散装(a)si和(b)lif的光子能量(eV)的函数。在这里,实验光谱显示为蓝色杂交,红线代表了使用GGA函数代替手稿中使用的LDA函数的KSP计算结果。可以看出,与实验保留的极好的一致性,实际上,与使用LDA功能进行的相同计算相比,理论吸收仅可忽略不计(与图。纸的2)
过度关注模型,效益太小 我和我的同事通过实证研究发现 [3],开发人员和研究人员对模型开发的巨大关注源于各种激励因素,例如出版声望、住院医师职位的评估方式、竞争差异化等等。现在,通过课程和纳米学位,人工智能教育变得更容易获得,但仍然主要侧重于模型构建,而不是解决收集数据或部署和测量系统的现实挑战,而这些挑战从业者越来越必须做这些。过分关注模型往往以忽视被征召参与构建或使用这些系统的弱势群体的基本关切为代价。随着人工智能模型越来越多地寻求干预政府、民间社会和政策制定者历史上一直难以应对的领域,这种立场变得有问题。
背景 在瑞典辐射安全局 (SSM) 的监管工作中,发现需要开发用于评估核电站中央控制室控制室工作的方法。如今,基准测试通常使用早期综合系统验证 (ISV) 的参考值(如果有 ISV)。通常,ISV 表现良好,但也存在一些弱点。目前缺少的一些知识要素包括如何严格明确哪些方面具有个体重要性以及哪些方面在集体上很重要,以及如何匹配不同的可衡量方面。除了先进的方法之外,在这一领域的知识改进可以给出可靠的结果,并在制定必备技能要求规范时提供指导,为可能需要更专注的教育和培训计划提供投入,并在 SSM 内部实现与现场监管相关的更高水平的知识。
在环理论中,构建一个包含另一个环的更大环非常有用,这被称为环扩展 [1-2, 11-15]。最近,人们研究使用 Turiyam 环 [16] 处理四向数据分析,并研究其广泛的性质 [17-19] 来解决各种决策问题。然而,需要对一些猜想和方程进行基本的证明,以理解数学代数的可用性 [20]。为了实现这一目标,本文重点研究了一些丢番图方程的可逆性条件及其对 Turiyam 环的扩展。