摘要 无人海事系统 (UMS) 是无人军事设备的一个重要子类别。虽然关于使用无人空中和陆基设备的大部分规范性争论同样适用于水上或水下设备,但 UMS 在理解现有法律的应用方面提出了独特的挑战。本文总结了最先进的技术,然后依次考虑了 UMS 的法律地位,特别是在《联合国海洋法公约》 (UNCLOS) 下的法律地位,以及海战法对其使用的规范。目前尚不清楚 UMS 是否根据《联合国海洋法公约》享有船舶地位;即使它们享有船舶地位,也不太可能被归类为军舰。尽管如此,无论是在和平时期还是在武装冲突中,它们的合法使用并不一定被禁止。
本研究旨在利用辐射探测器、无人系统和情境传感器的最新进展,证明远程感应核和放射性威胁材料的可行性。其广泛目的是将探测器从人类手中转移到半自主系统上,以用于广泛的用途。搜索特殊核材料是一个特定的任务领域,小型无人机系统上使用的辐射探测器可以通过利用远程访问带来的优势提供巨大的操作价值:缩短收集时间、缩短源到探测器的距离并减少无意屏蔽。本研究的目标有五个:(1) 评估当前的定向搜索能力并证实无人方法将带来的改进,(2) 扩大对背景辐射环境的了解,包括建筑物屋顶,(3) 根据对当前传感器和平台能力的分析,确定系统要求并绘制权衡参数空间(即权衡空间),(4) 研究和优化搜索方法,以及 (5) 确定和描述其他任务领域以供进一步调查。为了实现这五个目标,我们首先确定了三种不同搜索模式的信号收集时间、源到探测器距离(即间隔)和中间材料衰减的边界条件:车载间隔检测
摘要:银行上河床和地面设施的可视化对于分析条件,安全性和这种环境变化的系统至关重要。因此,在本文中,我们提出收集和处理来自各种传感器的数据(Sonar,Lidar,Multibeam Echosounder(MBES)和相机),以创建可视化以进行进一步分析。为此,我们从安装在自主,无人水文容器上的传感器中进行了测量,然后提出了一种数据融合机制,以使用水下和上方的模块进行可视化。融合包含有关经典图像和声纳的关键分析,点云的增强/减少,拟合数据和网格创建。然后,我们还提出了一个分析模块,该模块可用于比较和从创建的可视化中提取信息。分析模块基于分类任务的人工智能工具,有助于进一步与档案数据进行比较。使用各种技术测试了这种模型,以实现模拟和实际案例研究中最快,最准确的可视化。
迈向无人机系统融入国家空域系统:评估视觉观察员在白天、黄昏和夜间 sUAS 操作期间的即将发生碰撞的预测 Igor Dolgov 美国新墨西哥州立大学心理学系 id@nmsu.edu 提交日期:2015 年 11 月 2 日 摘要 在严酷的沙漠地区(完全没有人工光污染)进行了一项实验,以评估视觉观察员与轻型运动载人飞机和小型无人机系统(sUAS;Raven RQ-11B 或 Wasp III)保持视线并预测它们之间即将发生的碰撞的能力。我们研究了夜间和黄昏操作设置对观察员表现的影响(与白天相比),并操纵了关键视觉观察员相对于 sUAS 飞行员的位置。分析表明,夜间和黄昏时,轻型运动飞机的识别距离明显远于白天,观察者在夜间和黄昏时对 sUAS 的跟踪效果优于白天。此外,信号检测理论分析表明,当关键视觉观察者与 sUAS 飞行员位于同一位置时,碰撞预测率更高。讨论了夜间飞行安全和 sUAS 融入国家空域系统的影响。简介 在线巨头亚马逊、Facebook 和谷歌最近收购了无人驾驶汽车制造商,这表明这些技术将在我们国家可预见的未来发挥越来越重要的作用 (Solomon, 2014)。由于小型无人机系统 (sUAS) 的初始成本相对较低,运营费用也较低,而且可用于航空摄影和其他传感应用,预计该行业将在民用/商业领域近期内快速增长(北德克萨斯州政府委员会,2011 年)。另一个扩张的动力是公共安全实体(联邦和地方执法部门、边境巡逻、急救人员等)的兴趣收购和运营 sUAS 以建立/增强其航空能力(国会预算办公室,2011 年;国会图书馆华盛顿特区国会研究服务处,2012 年;美国空军,2009 年)。路线图概述的对研究、改革和监管的迫切需求随着两则近期新闻而引起公众关注尽管无人机系统具有巨大优势,但将其整合到国家空域系统会面临许多技术、安全、隐私、法律和监管挑战 (Anand, 2007; Carr, 2013; Dalamagkidis, Valavanis, & Piegl, 2008, 2011; DeGarmo and Nelson, 2004; 国际民用航空组织, 2011; Ravich, 2009),这些挑战已在美国联邦航空管理局 (FAA, 2013a) 的国家空域系统 (NAS) 民用无人机系统 (UAS) 整合路线图中进行了审查。
潜在用途包括携带货物,伤亡疏散,侦察,化学药品检测,通信和火灾支持。但是,理想用途和当前技术能力之间的差距很大。将系统传递到将要使用的地方,一旦到达那里的现实用途,而机器与士兵的互动经常被不受欢迎,但对于UGS将如何构成陆军并提供真正的运营优势至关重要。UGS的技术局限性必须反映在土地部队内部的任务组织中。必须考虑UGS将如何在战场上移动,因为通常不会出于自己的蒸汽。UGS的维护和维修将需要新的培训课程,并与工业合作伙伴建立密切的关系。
Teknofest组织的比赛鼓励年轻人探索无人的车辆技术,从而促进科学和技术进步。,它为那些渴望领导自主海洋技术发展的人提供了重要的机会。从事无人地面车辆技术的参与者将设计和开发能够成功完成任务的车队的车辆。在国防部和阿斯尔森部的领导下组织,比赛使年轻的创新者能够在未来的技术中脱颖而出。
© Springer-Verlag London Limited 2011 除了《1988 年版权、外观设计和专利法》允许的为了研究或个人学习、批评或评论目的的任何合理使用之外,本出版物只能在事先获得出版商书面许可的情况下,或根据版权许可机构颁发的许可条款进行复制、存储或传播,以任何形式或任何方式复制、存储或传播。有关超出这些条款的复制的问询应发送给出版商。本出版物中使用的注册名称、商标等并不意味着这些名称不受相关法律法规的约束,因此可以自由使用,即使没有具体声明也是如此。出版商对本书中包含的信息的准确性不作任何明示或暗示的陈述,并且对可能出现的任何错误或遗漏不承担任何法律责任。
本文主要研究以太阳能电池为主要动力源的无人机 (UAV) 的空气动力学和设计。该过程包括三个阶段:概念设计、初步设计和飞行器计算流体动力学分析。电动无人机的主要缺点之一是飞行时间;从这个意义上说,挑战在于创建一种可以提高无人机续航能力的空气动力学设计。在本研究中,飞行任务从飞行器设计尝试达到最大高度开始;然后,无人机开始滑翔,并通过太阳能电池实现电池电量恢复。使用概念设计,空气动力学分析重点关注作为滑翔飞行器的无人机,计算从估计重量和空气动力学开始,并以最佳滑翔角度结束此阶段。事实上,气动分析是针对初步设计进行的;此步骤涉及无人机的机翼、机身和尾翼。为了实现初步设计,需要对气动系数进行估算,并进行计算流体动力学分析。
