摘要:大脑计算机接口(BCI)系统可帮助电动机功能障碍的人与外部环境相互作用。随着技术的发展,BCI系统已在实践中应用了,但是它们的实用性和可用性仍然受到极大挑战。在使用BCI系统之前,通常需要大量的校准时间,这可以消耗患者的能量并容易导致焦虑。本文提出了一种基于新型的运动辅助方法,该方法基于新型的双支车多尺度自动编码器网络(MSAENET)来解释人脑运动图像的意图,同时引入了中心损失功能,以补偿传统的分类者的缺点,这些分类者仅考虑阶层间差异和忽略内部的内部内部cllass class class类。该方法的有效性在三个数据集上进行了验证,即BCIIV2A,SMR-BCI和OpenBMI,以实现MI-BCI系统的零校准。结果表明,我们提出的网络在所有三个数据集上都显示出良好的结果。在受试者独立的情况下,MSAENET在BCIIV2A和SMR-BCI数据集上的其他四个比较方法优于其他四个比较方法,而在OpenBMI数据集中则获得了F1_SCORE值高达69.34%。我们的方法通过少量参数和短预测时间保持更好的分类精度,该方法实现了MI-BCI系统的零校准。
摘要的目标是减肥手术来诱导2型糖尿病(T2D)中的体重减轻和血糖稳定性。由于HBA1C迅速下降,这可能导致糖尿病性视网膜病(DR)的早期恶化。在这项研究中,我们评估了整个T2D接受减肥手术的人的短期和长期DR开发的风险,并需要进行眼干预。方法该研究包括一个基于国家的,基于登记册的人群,其中T2D筛选为DR。在手术之日(指数日期)与非肺炎对照的年龄,性别和DR水平相匹配。我们提取了有关DR水平,内科和门诊治疗,药物处方和实验室价值的信息。我们在随访(6个月和36个月)时评估了DR(事件和进行性DR)的恶化。参加了238,967名T2D的人,参加了糖尿病眼镜筛查,我们确定了553例接受了减肥手术(0.2%)和2677个非肺炎对照。中位年龄为49岁,女性为63%。病例的合并症更多,HBA1C较低,并且比在索引日期的对照组更频繁地使用降糖和降压药物。在完全调整的逻辑回归模型中,与对照组相比,病例恶化的风险没有显着差异,短期(或0.41 [CI 95%0.13; 1.33; 1.33],p = 0.14),也不是长期(或0.64 [或0.64 [CI 95%0.33; 1.24; 1.24; 1.24],P = 0.18)。在这项全国研究中得出结论,减肥手术与短期或长期DR恶化的风险增加。
1 哈佛大学 Wyss 生物启发工程研究所,美国马萨诸塞州波士顿,2 塔夫茨大学生物系,美国马萨诸塞州梅德福,3 加利福尼亚大学旧金山分校 Bakar 计算健康科学研究所,美国加利福尼亚州旧金山,4 加利福尼亚大学旧金山分校儿科系,美国加利福尼亚州旧金山,5 斯坦福大学医学院儿科系,美国加利福尼亚州斯坦福,6 斯坦福大学医学院学术医学中心,美国加利福尼亚州斯坦福,7 马里兰大学医学院微生物学和免疫学系,美国马里兰州巴尔的摩,8 波士顿儿童医院和哈佛医学院血管生物学项目和外科系,美国马萨诸塞州波士顿,9 哈佛大学 John A. Paulson 工程与应用科学学院,美国马萨诸塞州剑桥
摘要。量子随机数发生器(QRNG)可以通过利用量子力学的固有概率性质来提供真正的随机性,量子力学在许多应用中起着重要作用。但是,真正的随机性获取可能会受到所涉及的不受信任设备的攻击,或者它们与现实生活实施中理论建模的偏差。我们提出并在实验上演示了独立于源设备的QRNG,该QRNG使人们能够使用不信任的源设备访问真实的随机位。随机位是通过测量时间的任何一个光子的到达时间 - 通过自发参数下调产生的能量纠缠的光子对的到达时间,在此通过观察非局部分散剂取消来证明纠缠。在实验中,我们通过改进的熵不确定性关系提取4 Mbps的生成速率,可以通过使用高级单光子检测器将其改进到每秒千兆位。我们的方法为QRNG提供了有前途的候选人,而实际上没有表征或容易出错的源设备。
原子和分子参与的气相碰撞会引起许多重要的物理现象,如反应和能量传递。1 能量传递的截面和速率系数广泛应用于燃烧、2 星际介质 3 和大气等建模领域。4 由于离散内部能级、隧穿和碰撞共振等量子效应,准确描述碰撞动力学需要量子力学处理。这些量子效应在冷碰撞和超冷碰撞中尤为重要,有时甚至占主导地位,近年来,由于技术进步,冷碰撞和超冷碰撞引起了广泛关注。5–11 非反应 12,13 和反应碰撞的量子散射理论都取得了重大进展。14–21 然而,我们在描述散射动力学方面仍然存在重大差距。其中一个例子是对非反应
摘要 — 在人类语音脑信号解码研究的活跃研究领域中,可以发现新形式的人与人之间的交流尚未开发的潜力。脑机接口系统可以使用脑电图信号来实现,因为它的临床风险较小,并且可以使用便携式仪器获取。脑机接口系统最有趣的任务之一是从原始脑电图信号中解码单词。在新用户使用脑机接口之前,当前基于脑电图的脑机接口研究通常需要特定于受试者的适应阶段。相比之下,与受试者无关的情况是人们非常希望看到的,因为它允许将训练有素的模型应用于新用户,而无需或几乎不需要预校准。鉴于这一关键特性,重点是创建一个可以在与受试者无关的情况下自适应地使用的高效解码器。我们的建议是在卷积层之间明确应用跳跃连接,以实现层间相互信息的流动。为此,我们在层之间添加了跳跃连接,使互信息在层间流动。然后,编码器的输出通过全连接层,最终表示 13 个类的概率。在本研究中,使用显性语音记录了 16 名参与者的脑电图数据。结果表明,当存在跳跃连接时,分类性能显着提高。关键词–脑机接口,深度学习,脑电图,语音处理
肉瘤是一类异质性罕见癌症,具有共同的间叶来源。然而,特定亚型的肉瘤具有不同的临床、病理和分子特征,导致对目前批准的标准治疗方法的反应不同,总体预后也各异 ( 1 )。尽管肉瘤种类繁多(目前世界卫生组织 (WHO) 的分类将肉瘤分为约 100 种组织学亚型),但在过去 40 年中,一刀切的治疗方法一直主导着晚期软组织肉瘤 (STS) 的治疗。骨肉瘤的治疗方法类似。尽管化疗最初在总体生存率方面取得了显著进展,但目前仅有传闻中的靶向疗法或免疫疗法被批准用于治疗肉瘤。因此,临床上迫切需要从分子水平上了解这些肿瘤,以“打破天花板”并显著影响这些患者的预后(2、3)。在多样化和罕见的肉瘤群体中,开发个性化、分子信息疗法具有挑战性。因此,目前只有一小部分软组织或骨肉瘤患者能从基因组靶向治疗中受益(4-7)。目前,美国食品药品管理局 (FDA) 批准用于治疗肉瘤的生物标志物靶向疗法很少,包括针对胃肠道间质瘤 (GIST) 的 KIT 和 PDGFRA、腱鞘巨细胞瘤的 CSF1R、上皮样肉瘤的 EZH2、血管周上皮样细胞分化瘤 (PEComa) 的 mTOR 和炎性肌成纤维细胞瘤的 ALK( 4 , 7 – 10 )。在过去十年中,随着对多种肿瘤类型致癌分子改变的了解不断加深,以及高效靶向疗法的出现,开启了药物开发的新时代,其特点是与组织学无关、生物标志物驱动的疗法( 11 )。在这个新时代,正在开发用于治疗特定分子改变的疗法,无论肿瘤组织来源如何。迄今为止,FDA 已批准六种药物作为组织学不可知论疗法,针对四种不同的分子生物标志物(12-16)。组织学不可知论开发首次被认可为一种新的药物审批监管途径,是因为微卫星不稳定性高 (MSI-H) 表型被认定为抗 PD-1 免疫检查点抑制剂疗效的预测生物标志物。这引发了一系列试验,研究使用 pembrolizumab 治疗来自不同原发来源的 MSI-H 肿瘤患者。初始疗效结果显著;总体缓解率 (ORR) 为 39%,包括具有 15 种不同肿瘤组织学的患者。此外,这种反应的持久性令人印象深刻——78% 的反应在六个月后持续 (17)。这些结果是 FDA 历史上不分组织学批准派姆单抗用于 MSI-H 肿瘤患者的基础。从那时起,派姆单抗的疗效已在更多患者中得到证实。此外,另一种抗 PD-1 药物 dostarlimab-gxly 也已获批用于相同适应症 ( 12 , 14 )。随后,拉罗替尼和恩曲替尼获批用于治疗 NTRK 融合实体瘤,派姆单抗获批用于治疗高肿瘤突变负荷 (TMB-H) 实体瘤,最近,达拉非尼和曲美替尼联合用药获批用于治疗 BRAF V600E 突变实体瘤 ( 13 ,
摘要 抑制控制是人脑中最重要的控制功能之一。我们对其神经基础的大部分理解来自于开创性的研究,这些研究表明右下额回 (rIFG) 损伤会增加停止信号反应时间 (SSRT),这是一个表达抑制控制速度的潜在变量。然而,最近的研究发现了 SSRT 方法的重大局限性。值得注意的是,SSRT 受到触发失败的困扰:从未启动抑制控制的停止信号试验。此类试验会使 SSRT 膨胀,但通常表明注意力缺陷,而不是抑制缺陷。在这里,我们使用分层贝叶斯模型来识别人类 rIFG 损伤患者、非 rIFG 损伤患者和健康对照者的停止信号触发失败。此外,我们测量了头皮脑电图以检测 β 爆发,这是抑制控制的神经生理指标。 rIFG 病变患者的触发失败试验次数增加了 5 倍以上,并且没有表现出与停止相关的额叶 β 爆发的典型增加。然而,在发生此类 β 爆发的试验中,rIFG 患者表现出典型的后续 β 上调,这些 β 上调发生在感觉运动区域,表明他们实施抑制控制的能力一旦被触发,就会保持完好。这些发现表明,rIFG 在抑制控制中的作用必须从根本上重新解释。
摘要:最近,综合基因组分析检查 (CGP) 得到了发展,并检测到了各种肿瘤不可知突变,从而推动了针对实体肿瘤的新型分子靶向疗法的发展。此外,乳腺癌和卵巢癌等遗传性肿瘤的阐明开创了一个新时代,该时代的特点是开发了新疗法和终身管理策略,这些策略是潜在或已出现遗传性癌症的患者所必需的。然而,在急性髓系白血病 (AML) 中,很少有肿瘤不可知或遗传性突变成为研究重点,相关的分子靶向疗法仍然发展不佳。参考日本的CGP研究,重点研究了TP53、KIT、KRAS、BRCA1、ATM、JAK2、NTRK3、FGFR3、EGFR等具有代表性的肿瘤无关突变,探讨了针对具有肿瘤无关突变的AML开发分子靶向治疗的可能性。总结了这些突变的发生频率、预后、结构和功能以及目前在实体瘤中的治疗策略,揭示了实体瘤与AML的遗传关系,并开发了AML的肿瘤无关的分子靶向治疗和终生管理策略。
摘要 在当今高度数字化的社会中,安全信息检索是一项基本任务。在某些应用中,可能需要强制执行用户查询的隐私和数据库内容的安全性。对于这些设置,可以采用对称私有信息检索 (SPIR),但众所周知,其实现要求很高,需要私钥交换网络作为基础层。在这里,我们首次报告了由量子安全密钥交换网络连接的可证明安全的 SPIR 的实现。SPIR 方案着眼于生物特征安全性,可从包含 800 个条目的数据库中安全检索 582 字节的指纹文件。我们的实验结果清楚地证明了 SPIR 与量子安全通信的可行性,从而为未来量子互联网上的安全分布式数据存储和云计算开辟了新的可能性。