摘要 — 脑电图 (EEG) 信号由于其防欺骗功能而有望成为其他生物识别技术的替代品。先前的研究侧重于通过分析任务 / 条件特定的 EEG 来捕捉个体差异。这项工作尝试通过规范化相关方差来建模独立于任务 / 条件的生物特征签名。为了实现这一目标,本文扩展了基于子空间的文本独立说话人识别的思想,并提出了用于建模多通道 EEG 数据的新颖修改方法。所提出的技术假设生物特征信息存在于整个 EEG 信号中,并在高维空间中随时间积累统计数据。然后将这些高维统计数据投影到低维空间,生物特征信息得以保留。使用所提出的方法获得的低维嵌入被证明是与任务无关的。最佳子空间系统识别个体的准确率分别为 86.4% 和 35.仅使用 9 个 EEG 通道,在分别包含 30 名和 920 名受试者的数据集上实现了 9% 的准确率。该论文还深入分析了子空间模型在训练过程中对未见过的任务和个体的可扩展性,以及子空间建模所需的通道数量。
主要关键词