2d Ultralow-k无定形碳BARBAROS OEZYILMAZ材料科学与工程系,EA Block,EA,#03-09,9工程驱动器1,新加坡117575,新加坡新加坡大学物理大学,新加坡国立大学物理学系,2科学驱动器3,S12,S12,S12,SIS12,SIGER DRICERS NIGHAPORE 117551,SINDAPERE,SINGAPERE,SINDAPERE,国际化学,国籍,国籍,国际化学,国籍,国籍,国际化学,国际化,新加坡新加坡国立大学新加坡大学功能智能材料研究所,第9级,第9级,科学驱动器2,新加坡117544,新加坡大学新加坡大学barbaros@nus.edu.sg.sg.sg二维(2D)材料在Monolayer厚度较高的范围中,Science Drive 2,新加坡117544 117544原子极限。尽管正在进行的综合电路的2D革命取得了重大进步,但一个关键的构件,即2D Ultralow-K8(ULK)电介质,但仍未报告。挑战在于实现小于3的介电常数(k),因为传统的低K电介质由于其无定形或多孔性质而在2D极限内固有地不稳定。还需要使用低K的超薄电介质的实现来解决集成电路缩放中的当前瓶颈。具体而言,由于导电元件之间的距离缩小到10 nm以下,因此必须使用低K材料来最大程度地减少寄生电容。在这里,我们表明2D无定形碳(稀薄至0.8 nm)是一种机械强大的2D ULK介电介电,k为1.35,介电强度为28-31 mV cm-1。缺乏任何远距离顺序,其内在的2D性质,SP2碳特性和低密度对于最大程度地减少介电介电常数至关重要。此外,它以创纪录的金属离子扩散时间(TTF)为10+10 s的现有电介质扩散降解的脆弱性甚至是单层。因此,可以消除最多需要3 nm的额外层,这尤其重要,因为金属线宽度接近10 nm。结合其低温,直接和共形生长,即使在介电上,这些关键特征也能够对基于硅的半导体电子产品进行大量改进,并确保与未来的2D电子产品兼容。
摘要:有机光伏和光电子中具有改进的光能转化的固态材料,预计将通过通过操纵向单元状态的自旋转换过程来实现高效的三重态 - 三重态 - 三重态 - 三重态 - 三重态 - 三重态 - 三胞胎 - 三胞胎(TTA)。在这项研究中,我们从分子构象的显微镜视图中阐明了TTA延迟荧光的自旋转换机制。我们使用时间分辨的电子顺磁共振通过使用时间分辨的电子磁共振,研究了三胞胎状态(TT状态)电子自旋极化(TT状态)的时间演变。我们澄清说,单线TT的自旋状态人群通过三胞胎和五重骨TT状态在激子扩散期间的自旋相互转换增加,并且在两个三重态之间进行了随机取向动力学,以调节交换相互作用,从而实现了高分转化发射的高量子量产率。这种理解为我们提供了用于开发利用TTA的有效光能转换设备的指南。
无定形的氧化物半导体晶体管已成为展示面板中的成熟技术,并且最近被认为是用于单片3D应用的有希望的后端兼容通道材料。然而,实现具有与传统晶体半导体相当的性能的高弹性无定形半导体材料一直是一个长期的问题。最近发现,通过原子层沉积(ALD)工艺实现的氧化im氧化物的厚度可以调整其材料特性以实现高迁移率,高驱动电流,高/o效比,并在同一时间超出了传统氧化物半导体材料的功能。在这项工作中,综述了这项工作的历史,导致氧化含量重新出现,其基本材料特性,侧重于ALD的生长技术,最先进的氧化辅助设备研究以及设备的偏置稳定性。
摘要:纳米晶体碳酸钙 (CaCO 3 ) 和无定形 CaCO 3 (ACC) 是越来越受技术关注的材料。如今,它们主要通过在稳定剂存在下使用 CaCO 3 试剂的湿法反应合成。然而,最近发现 ACC 可以通过球磨方解石生产。方解石和/或文石是软体动物壳的矿物相,由 ACC 前体形成。在这里,我们研究了在潜在的工业规模上将废弃软体动物贝壳中的生物源 CaCO 3 (bCC) 转化为纳米晶体 CaCO 3 和 ACC 的可能性。使用来自水产养殖物种的废弃贝壳,即牡蛎 (Crassostrea gigas,低镁方解石)、扇贝 (Pecten jacobaeus,中镁方解石) 和蛤蜊 (Chamelea gallina,文石)。球磨工艺是通过使用不同的分散溶剂和潜在的 ACC 稳定剂进行的。使用了结构、形态和光谱表征技术。结果表明,机械化学过程导致晶体域尺寸减小并形成 ACC 域,它们共存于微尺寸聚集体中。有趣的是,bCC 的行为与地质 CaCO 3 (gCC) 不同,在长时间研磨 (24 小时) 后,ACC 重新转化为结晶相。机械化学处理的 bCC 在不同环境中老化产生了特定物种质量比的方解石和文石混合物,而 gCC 中的 ACC 仅转化为方解石。总之,这项研究表明,bCC 可以产生具有特定物种特征的纳米晶体 CaCO 3 和 ACC 复合材料或混合物。这些材料可以扩大 CaCO 3 已经很广泛的应用领域,从医学到材料科学。■ 介绍
通过球磨机械化学工艺从废贝壳中生产纳米晶和无定形碳酸钙 Chiara Marchini, 1 Carla Triunfo, 1,2 Nicolas Greggio, 3 Simona Fermani, 1 Devis Montroni, 1 Andrea Migliori, 4 Alessandro Gradone, 4 Stefano Goffredo, 2,3 Gabriele Maoloni, 5 Jaime Gómez Morales, 6 Helmut Cölfen, 7 和 Giuseppe Falini 1,* 1 博洛尼亚大学化学系“Giacomo Ciamician”,via F. Selmi 2, 40126 Bologna, 意大利,电子邮件:giuseppe.falini@unibo.it。2 Fano Marine Center,viale Adriatico 1/N 61032 Fano,意大利。3 博洛尼亚大学生物、地质与环境科学系,via F. Selmi 3, 40126 Bologna, Italy。4 微电子与微系统研究所 (IMM) - 博洛尼亚 CNR 分部,地址:P. Gobetti 101,邮编:40129,博洛尼亚,意大利。5 Finproject S.p.A.,工厂阿斯科利皮切诺,Via Enrico Mattei,1-Zona Ind.le Campolungo,3100 阿斯科利皮切诺,意大利。6 晶体学研究实验室,安达卢西亚地球科学研究所(CSIC-UGR),Avda Las Palmeras 4,18100 Armilla(格拉纳达),西班牙。7 康斯坦茨大学化学系、物理化学,Universitätsstrasse 10,Box 714,D-78457 康斯坦茨,德国。
这项研究的目的是通过两种不同的方法检查和分析作用于无定形核心变压器低压和高压绕组的轴向和径向力,电磁力(EMFS):一种分析方法:3-D有限元元件(FEM)。首先,提出了分析方法来分析磁回路中泄漏磁场的分布和作用在变压器绕组上的力。然后提出嵌入在ANSYS MAXWELL中的FEM,以在三个不同的工作条件下计算和模拟轴向和径向力:无负载,额定额定负载和短路。最终比较了从低压和高压绕组中的两种不同方法,例如额定电压,额定电流,短路电流,轴向和径向力以及EMF,以说明方法一致。该方法的验证应用于1600KVA-22/0.4KV的三相无定形核心变压器。
b'功能陶瓷对于电池的可扩展生产固体电解质至关重要。li-garnet li 7 la 3 Zr 2 O 12 D(LLZO),尤其是其立方相(Cllzo),由于其高LI + conductitivity和广泛的电化学稳定性窗口而引起了人们的注意。但是,高烧结温度引起了对阴极界面稳定性,生产成本和可扩展制造能源消耗的担忧。我们显示了一种替代\ Xe2 \ x80 \ x9csinter-free \ xe2 \ x80 \ x9d途径,以稳定Cllzo作为其烧结温度的一半胶片。具体而言,我们建立了一个时间温度的翻译(TTT)图,该图可捕获基于结晶焓分析的非晶态 - 结晶的LLZO转换,并确认在500 \ xc2 \ xc2 \ xb0的低温下进行薄膜薄膜的稳定稳定。可用于针对生产中碳足迹减少的电池电池设计。
无定形铁钙磷酸盐 (Fe-ACP) 对某些啮齿动物牙齿的机械性能起着至关重要的作用,牙齿非常坚硬,但其形成过程和合成途径仍不清楚。本文报道了在柠檬酸铁铵 (AIC) 存在下含铁无定形磷酸钙的合成和表征。铁在所得颗粒中以纳米级均匀分布。制备的 Fe-ACP 颗粒在水、模拟体液和醋酸盐缓冲溶液 (pH 4) 等水性介质中高度稳定。体外研究表明这些颗粒具有良好的生物相容性和成骨特性。随后,利用放电等离子烧结 (SPS) 来固化初始 Fe-ACP 粉末。结果表明,陶瓷的硬度随铁含量的增加而增加,但铁过量会导致硬度迅速下降。可以获得硬度为 4 GPa 的磷酸铁钙陶瓷,高于人类牙釉质。此外,由铁钙磷酸盐组成的陶瓷表现出增强的耐酸性。本研究提供了一种制备 Fe-ACP 的新方法,并展示了 Fe-ACP 在生物矿化中的潜在作用以及作为制备耐酸高性能生物陶瓷的起始材料。
摘要:诸如玻璃,聚合物和无定形合金之类的无定形材料具有广泛的应用,从日常生活到极端条件,由于它们在弹性,强度和电阻率方面具有独特的特性。对无定形材料原子结构的更好理解将为其进一步的工程和应用提供宝贵的信息。然而,在实验上确定无定形材料的三维原子结构是一个长期的问题。由于原子布置无序,无定形材料在远程规模上没有任何翻译和旋转对称性。常规表征方法,例如散射和显微镜成像,只能提供在宏观区域上平均的统计结构信息。无定形材料的3D原子结构的知识有限。最近的原子分辨率电子断层扫描(AET)已证明是一种越来越强大的原子尺度结构表征的工具,而无需任何晶体假设,这为确定各种无定形材料的3D结构打开了一扇门。在这篇综述中,我们总结了过去几十年来探索无定形材料原子结构的最新特征方法,包括X射线/中子衍射,纳米梁和Angstrom-Beam电子衍射,波动电子显微镜,高分辨率扫描/传输电子显微镜和Atom tomography。从实验数据和理论描述中,已经建立了各种无定形材料的3D结构。特别是,我们介绍了AET的原理和最新进展,并突出了AET最新的开创性壮举,即,在多组分玻璃合金中对所有3D原子位置的首次实验确定,在多型玻璃合金中和3D原子包装中的无相固体固体中的3D原子包装。我们还讨论了表征无定形材料中化学和结构缺陷的新机会和挑战。
奥斯陆奥斯陆大学生物材料系,0317年,挪威B鲁道夫·西姆登斯·里加·里加·里加·里加·里加·雷加生物材料创新和发展中心,通用化学工程研究所,材料科学与应用化学学院,里加·里加·里加技术大学,里加,拉特维亚c c c c c c c c c c c c c c c c c c c c c>雷克雅未克大学,雷克雅未克,冰岛,冰岛e,土地斯托里 - 冰岛国立大学医院,雷克雅未克,雷克雅未克,冰岛冰岛,冰岛免疫学系,基础医学院,第四军科大学,西安,第710032,710032,公关中国临床和分子医学系,诺维格大学,诺维尔大学,科学和技术部,挪威