椭圆法是一种非接触,无损的光学表征技术,可在通过样品反射或传播反射或传输后测量光的偏振变化。样品引起的极化变化通常报告为各向同性样品的ψ和∆。但是,广义和穆勒矩阵椭圆法不限于测量膜厚度和光学常数是主要兴趣的各向同性样品。通过测量Mueller矩阵,我们可以表征最先进的材料。一些例子包括任意各向异性,晶体底物和膜,在卷到滚动应用中发现的拉伸聚合物箔中的双折射,AR/VR设备中的极化过滤器,整个液晶细胞中的极化过滤器,整个液晶细胞,方向的纳米结构,方向的纳米结构,变质,或定期3D材料。Mueller矩阵包含所有必需的光学信息,包括强度传播,由于线性和圆形双发性,线性和圆形二色性以及相位迟缓而引起的交叉极化。本质上,Mueller矩阵将描述任何可能的光学效果。
我们的生态系统越健康,地球及其人民越健康。考虑到这一点,联合国大会宣布了2021 - 2030年联合国生态系统修复的十年,以呼吁保护和复兴世界各地的生态系统,以使人们和自然的利益。它的目的是停止生态系统的降解,恢复它们并保护仍然完好无损的生态系统,总体目的是增强人们的生计,抵消气候变化,并停止生物多样性的崩溃。Kunming -Montreal全球生物多样性框架(12月-COP15,蒙特利尔):在整个地球上欢呼式的框架中,188个国家同意采取具体措施,以停止和反向生物多样性损失。这包括将30%的星球置于保护之下,到2030年将30%的降级生态系统恢复在陆地和海上,并在2030年之前解锁新的金融流以进行自然恢复。符合全球生物多样性框架,2030年的欧盟生物多样性战略旨在通过恢复生态系统来促进欧盟土地和海洋地区的生物多样性和弹性性质的持续,长期和持续的恢复。以此目标,6月22日
使用在线拉曼光谱法开发了通过 - 硅vias(TSV)阵列内的应力演化的全面图片。一组具有不同TSV几何形状和金属种子衬里厚度的晶圆暴露于各种退火条件。监测VIA之间的Si-Si声子模式移动,通过几何形状和加工条件对Si底物中应力的影响是无损的。紧密靠近TSV的压缩应力。然而,对于带有小TSV音高的阵列,底物在VIA之间的空间中并没有完全放松,而是在阵列内积聚拉伸应力。这种病间应力随着TSV螺距的降低而增加,积聚向阵列的中心,并在很大程度上取决于退火条件。阵列中的高分辨率拉曼图显示了TSV阵列中应力分布的全部图片。通过使用不同的激发波长,探测了Si晶片中应力的变化。这些发现证明了对过程依赖性压力信息的在线访问的价值。此知识有助于定义设计基本规则,以获得最高设备性能或最大化晶体上可用区域的逻辑设备。
本专栏的常客都知道,我并不赞同在 TBO 时检修发动机。我认为发动机 TBO 是一个彻底被否定的概念,它导致完好无损的发动机被任意停用,给飞机所有者造成了数亿美元的损失。航空公司和军方几十年前就放弃了在特定小时数检修飞机发动机的概念。活塞 GA 是航空业中最后一个仍然认同这一荒谬想法的领域。我的 Cessna T310R 上的 TSIO-520-BB 发动机的公布 TBO 为 1,400 小时。我的两台发动机现在都已使用 2,800 小时(TBO 的 200%),而且仍然运行良好,非常感谢。我的许多托管维护客户都已远远超过了 TBO。一台发动机的 TBO 为 2,000 小时,现在已使用 3,200 小时,并且运行良好。TBO 之所以如此流行,有几个原因。一是发动机寿命与发动机使用时间关系不大。使用时间不会限制我们发动机的寿命。最大的寿命限制因素是在闲置期间暴露于腐蚀性环境。其次是操作员滥用,尤其是冷启动和不当
摘要:核酸脱甲基酶的ALKB家族目前具有强烈的化学,生物学和医学兴趣,因为它们在几个关键的细胞过程中具有关键作用,包括表观遗传基因调节,RNA代谢和DNA修复。新兴证据表明,ALKB脱甲基酶的失调可能是几种人类疾病的发病机理,尤其是肥胖,糖尿病和癌症。因此,对这些酶开发选择性抑制剂的浓厚兴趣是促进其机械和功能研究并验证其治疗潜力的兴趣。在这里,我们回顾了过去二十年来ALKB脱甲基酶抑制研究所取得的显着进步。我们讨论了报告的抑制剂的合理设计,它们的结合方式,选择性,细胞活性和治疗机会。我们进一步讨论了ALKB亚家族的未开发的结构元素,并提出了潜在的策略以实现亚家族选择性。希望这种观点能够激发新型抑制剂设计并推进该领域的药物发现研究。
将桌子橄榄变成有益细菌和酵母菌的适当载体,至关重要的是,必须采用可靠的方法来分析生物膜中的微生物。这项工作验证了在西班牙式绿桌橄榄发酵过程中研究乳酸细菌和酵母菌分布的非破坏性程序的应用。实验室规模的发酵与三种乳杆菌果胶菌株(LPG1、119和13B4)和两种酵母(Wickerhamomyces Y12和苏克氏症状Y30)同时接种。数据表明,五氯H. pentosus lpg1和酵母菌W. anomalus Y12非常容易定卵生物膜,但只有乳脂甲基杆菌菌株也可以穿透果实的表皮并定居于肉体。应用无损的治疗方法,该治疗方法与经典的抗胃抗能破坏性方法相比,用玻璃珠炮弹获得了类似的乳酸细菌和酵母菌的恢复。然而,玻璃珠程序改善了元基因组学分析的质量(尤其是在使用16 s rRNA基因的测序时)。结果表明,程序的极大效用不会破坏研究发酵蔬菜生物膜的果实。
摘要:原则上,地面高功率激光器能够通过远程诱导激光烧蚀动量使任何类型的空间碎片物体脱离低地球轨道 (LEO)。然而,效率和操作安全性的评估取决于许多因素,例如大气限制或辐射过程中碎片解体的风险。我们分析了各种目标几何形状和尺寸的激光动量,并且首次在大规模模拟中将热约束纳入激光辐照配置中。使用相干耦合的 100 kJ 激光系统,波长为 1030 nm,脉冲持续时间为 5 ns,在优化的指向仰角范围内,脉冲频率应小于 10 Hz,以防止碎片熔化。对于机械完好无损的有效载荷或火箭体,重复率应该更低。尺寸在 10 到 40 厘米之间的小碎片可以通过大约 100 到 400 次正面照射来脱离轨道,而超过 2 米的物体通常需要超过 1000 次照射才能脱离轨道。因此,基于激光的碎片清除不能被视为处理最高风险大型碎片的主要太空可持续性措施,但它可以使用全球分布的激光站点的小型网络来修复大量小型碎片。
FTIR技术在PHAR MACEUTICAL分析领域的适用性很好,可以很好地提出。但是;配备强大计算机软件的制造强大光谱仪的最新进展为重新发现了旧技术的定性可行性开辟了新的机会(Bunaciu等人al 2010)。更重要的是,新一代支持人工智能的仪器已经彻底改变了新方法,例如化学计量学。探索以定量方式参与红外光谱的能力总是对科学家的吸引力。该技术提供了一种无损的简单绿色替代品,可用于经典的甲基甲烷类ODS。躲避乏味的,环境有害和昂贵的以某种方式复杂的样品制备程序代表了药物分析应用中与IR光谱相关的一些优势。目前的工作旨在阐明几种Commer cial IBU剂型中Ac Tive Pharmaceutical成分(API)的FTIR定量浓度测量的适用性。该技术比传统测试提供了许多优势。IBU被选择用于研究FTIR技术的定量适用性,因为它是一种全球镇痛药。毫无疑问,这项研究的结果将使用具有可比结果的简单技术提供重要的药物分析的示例。
摘要 — 脉冲神经网络 (SNN) 通过离散二进制事件计算和传递信息。在新兴的神经形态硬件中,它被认为比人工神经网络 (ANN) 更具生物学合理性且更节能。然而,由于不连续和不可微分的特性,训练 SNN 是一项相对具有挑战性的任务。最近的工作通过将 ANN 转换为 SNN 在出色性能上取得了实质性进展。由于信息处理方面的差异,转换后的深度 SNN 通常遭受严重的性能损失和较大的时间延迟。在本文中,我们分析了性能损失的原因,并提出了一种新型双稳态脉冲神经网络 (BSNN),解决了由相位超前和相位滞后引起的失活神经元 (SIN) 脉冲问题。此外,当基于 ResNet 结构的 ANN 转换时,由于快捷路径的快速传输,输出神经元的信息不完整。我们设计了同步神经元 (SN) 来帮助有效提高性能。实验结果表明,与以前的工作相比,所提出的方法仅需要 1/4-1/10 的时间步骤即可实现几乎无损的转换。我们在包括 CIFAR-10(95.16% top-1)、CIFAR-100(78.12% top-1)和 ImageNet(72.64% top-1)在内的具有挑战性的数据集上展示了 VGG16、ResNet20 和 ResNet34 的最先进的 ANN-SNN 转换。
摘要:化脓性链球菌 Cas9 蛋白 (SpCas9) 是微生物中基于 CRISPR 的免疫系统的一个组成部分,已广泛用于基因组编辑。该核酸酶与向导 RNA (gRNA) 形成核糖核蛋白 (RNP) 复合物,从而诱导 Cas9 结构变化并触发其切割活性。在这里,电子圆二色性 (ECD) 光谱用于确认 RNP 的形成并确定其各个组成部分。ECD 光谱具有区分 Cas9 和 gRNA 的特征,前者显示出负/正谱,最大值位于 221、209 和 196 nm,而后者显示出正/负/正/负模式,条带分别位于 266、242、222 和 209 nm。首次展示了 gRNA:Cas9 RNP 复合物的实验 ECD 光谱。它表现出双标记正/负 ECD 偶联,最大值位于 273 和 235 nm,并且与每个 RNP 成分的单独光谱有显著不同。此外,Cas9 蛋白和 RNP 复合物在 ECD 测量后仍保留生物活性,并且它们能够在体外结合和裂解 DNA。因此,我们得出结论,ECD 光谱可被视为一种快速且无损的方法,用于监测 Cas9 蛋白因 Cas9 和 gRNA 相互作用而发生的构象变化,以及鉴定 gRNA:Cas9 RNP 复合物。