发件人:海军记录修正委员会主席 收件人:海军部长 主题:审查美国海军 XXX-XX- 的海军记录 参考:(a)第 10 章 USC § 1552(b)DoD 7000.14-R FMR 第 7A 卷,第 1 章 附件:(1)DD 表格 149 及附件(2)当事人的海军记录 1. 根据参考(a)的规定,当事人(以下称为申请人)向海军记录修正委员会(委员会)提交了附件(1),要求更正她的海军记录,以显示申请人的薪资入职基准日期(PEBD)已调整为包括她在加入美国海军之前在陆军国民警卫队服役的可记名服役期。 2. 委员会由 、 和 组成,于 2023 年 1 月 5 日审查了请愿人的错误和不公正指控,并根据其规定,决定根据现有的记录证据采取以下纠正措施。委员会审议的文件材料包括附件、请愿人海军记录的相关部分以及适用的法规、条例和政策。 3. 委员会审查了与请愿人的错误和不公正指控有关的所有记录事实,发现如下:a. 2016 年 11 月 9 日,申请人加入国民警卫队,服役 8 年,服役期限为 2024 年 11 月 8 日。根据军事处理记录 - 美国武装部队(DD 表格 1966/1),申请人的退役日期为 2016 年 11 月 9 日。2019 年 1 月 18 日,申请人收到国民警卫队退役报告和服役记录(NGB 表格 22),入伍日期为 2016 年 11 月 9 日。此外,带薪服役总时间为 2 年 2 个月 10 天。申请人的预备役/军事服役义务终止日期被列为不适用。b. 2019 年 4 月 30 日,申请人加入海军预备役 8 年。根据 DD 表格 1966,请愿人的 PEBD 列为 2019 年 12 月 4 日,请愿人进行了以下记录:“我于 2016 年 11 月加入陆军国民警卫队。我于 2019 年 1 月退役。” 2019 年 12 月 4 日,请愿人开始服现役 4 年,现役义务服役结束 (EAOS) 为 2023 年 12 月 3 日,现役义务服役软结束 (SEAOS) 为 2024 年 12 月 3 日。
如果源数据中没有每日剂量,则可以使用最常见剂量:对于每个源药物概念或源/目标药物概念组合,定义最常见剂量,然后将其应用于缺少剂量的记录。如果根本没有每日剂量,可以使用 ATC DDD(定义每日剂量)作为用于成人主要适应症的药物的假定平均每日维持剂量 4 。该方法在 OHDSI 论坛 5 上进行了讨论,并在口服固体药物上进行了测试。使用另一个合理的估计来评估方法的合理性:根据以下处方计算结束日期并假设服药的最常见持续时间应为 7/30/60/90 天。此外,我们审查了来源中 200 种最常见药物的结果,并得出结论,在大多数情况下,ATC DDD 方法是适用的(例如,来源药物是“氨氯地平 5 毫克口服片”,总量 = 28 片,ATC DDD = 5 毫克 => 计算持续时间 = 28 天)。但是,这种方法有一些局限性。一些药物的剂量不同,适用于不同的治疗目的,例如,阿司匹林作为镇痛药/解热药的剂量为 3 克/天,作为抗血栓剂的剂量为 1 片/天(与强度无关)。
1 Biotechnology 2504000053 Afjal Ansari imtiyaz ansari 49 70 1 2 biotechnology 2504000052 prenna tandon tandon tandon pradeep tandon 48 70 2 3 biotechnology 25040037 Khushi Shukla Anand Shukla 42 70 3 4 Biotechnology 2504000038 Bhupendra Kumar Jalam Singh 38 70 4 5 Biotechnology 2504000042 Vishwajeet Singh Manoj Kumar Singh 38 70 5 6 Biotechnology 2504000051 Satish Kumar Ramesh 38 70 6 7 Biotechnology 2504000022 Rubeena Abbas Sayed Ateek Abbas 37 70 7 8 Biotechnology 2504000023 Sohan Lal Srivastava Gopal Ji Srivastava 36 70 8 9 Biotechnology 2504000050 Aryan Varma Ashok Kumar先生36 70 90 9 10 Biotechnology 2504000043 Shreya Kushwaha Shishir Shishir Kushwaha Shishir Kushwaha 34 75 Kanaujia 33 70 11 Biotechnology 2504000024 Rukhsar Mohd Zahor 32 70 12 13 Biotechnology 2504000030 Subhankar Bhunia Tarun Bhunia 32 70 13 14 Biotechnology 2504000031 Riya Saini Hari Kumar Saini 32 70 14 15 Biotechnology 25040000466 Pallavi Srivastava Mahendra Kumar Srivastava 31 70 15 16生物技术2504000029 ????????????????????????????29 70 16 17 Biotechnology 2504000034 Manisha Singh Manoj Kumar Singh 28 70 17 18 Biotechnology 2504000025 Monika Surya Prakash 28 70 18 19 Biotechnology 25040033 Vivek Singh Shyam Kumar 28 70 19 20 Biotechnology 2504000027 Prienshu Singh Jagannath Prasad 25 70 20 21生物技术2504000039 Shanya Malviya Santosh Kumar Malviya 22 21 22 22生物技术2504000036 PRIYAM SRIVASTAV VINOD SRIVASTAV先生Vinod Srivastav 22 70 22 22 22 Suresh Kumar 20 70 24
zdmhost.zdm: Audit ID: 185 Job ID: 1 User: zdmuser Client: zdmhost Job Type: "EVAL" Scheduled job command: "zdmcli migrate database -rsp /home/zdmuser/logical_offline_adb/logical_offline_adb.rsp - sourcenode onphost -sourcesid oradb -srcauth ZDMAUTH -SRCARG1用户:Onpuser -Srcarg2 Identity_file:/home/ZDMUSER/.ssh/ID_RSA -SRCARG3 sudo_location:/usr/usr/bin/bin/bin/sudo -eval“计划工作执行时间开始:等效的本地时间:2024-10-18 11:00:52当前状态:成功结果文件路径:“/home/zdmuser/zdm/zdm/zdmbase/chkbase/chkbase/scheduled/scheduled/job-1-1-2024-10-10-18-18-11:01:01:21.log”计量路径: "/home/zdmuser/zdm/zdmbase/chkbase/scheduled/job-1-2024-10-18-11:01:21.json" Excluded objects file path: "/home/zdmuser/zdm/zdmbase/chkbase/scheduled/job-1-filtered-objects-2024-10-18T11: 05:34.879。
3。基于正念的计划 - 定义为以好奇心和善良的关注能力(Kabat -Zinn 2003) - 已被证明会对儿童的自我调节技能产生积极影响(Zoogman等人。2014)并减少压力的负面影响(Biegel等人。2009; Broderick and Metz 2009; Mendelson等。2010)。
NAVFAC 开放环境修复资源 (OER2):确定 MEC/MPPEH 水下埋藏深度的方法军用弹药被发现在某些水下位置,这是历史处置活动以及实弹训练、测试和其他操作的结果。在水下环境中仍能发挥作用的射弹和其他弹药构成爆炸危险,可能会迁移,使人员接触到这些弹药。这种爆炸危险的管理很复杂,取决于特定地点的考虑因素,例如弹药类型、海洋环境、移动潜力以及人员如何接触和与弹药互动。本次网络研讨会的目的是总结为了解水下环境中弹药的移动性和埋藏而开发的科学。将介绍环境观测、弹药观测技术、移动性和埋藏现场观测、移动与埋藏的物理学以及埋藏的物理过程建模。演示将以将这些知识在现有场地的实际应用结束。 演讲者:Bryan Harre,NAVFAC EXWC 和 Joe Calantoni,美国 NRL 博士 日期:2022 年 11 月 9 日,星期三 时间:太平洋时间上午 11 点 | 美国东部时间下午 2 点 通过以下链接注册参加网络研讨会:https://einvitations.afit.edu/inv/anim.cfm?i=697664&k=0468450F7D53 如果您无法点击链接,请将地址复制并粘贴到您的网络浏览器中。 州际技术与监管委员会 (ITRC) 关于可持续弹性修复 (SRR) 的网络研讨会 极端天气事件会对修复措施保护人类健康和环境的能力产生不利影响。可持续弹性修复 (SRR) 被定义为“清理和再利用危险废物场地的优化解决方案,可限制负面影响、最大化社会和经济效益并增强对日益增加的威胁的抵御能力”。该网络研讨会介绍了一些工具,可帮助将可持续和有弹性的实践融入修复项目中。主题:可持续的弹性修复演讲者:ITRC 日期:2022 年 11 月 17 日时间:太平洋时间上午 10 点 | 美国东部时间下午 1 点通过以下链接注册参加 ITRC 网络研讨会:https://clu-in.org/conf/itrc/SRR/有关更多信息,请查看 ITRC 关于此主题的报告:https://srr-1.itrcweb.org/ RPM 培训活动主题的最后一次征集 RPM 培训主题的最后一次征集:现在到 2022 年 11 月 16 日链接:https://einvitations.afit.edu/inv/anim.cfm?i=699708&k=04684B0E7B5F RPM 培训日期更新:2023 年 3 月 14 日至 16 日*这与原始/预计日期不同* 正在评估场地,活动举办批准将决定最终日期和地点。
人工智能(AI)可以在向预测,预防和个性化医学转变的转变中发挥至关重要的作用,前提是我们受到患者投入的科学的指导。患者报告的结果指标(PROM)代表了一个独特的机会,可以从患有健康状况的人们那里捕捉经验知识,并使其与所有其他利益相关者具有科学意义。尽管如此,使用标准化结果的吸收有限,包括研究和医疗保健系统中的舞会。本观点文章讨论了大规模使用舞会的挑战,重点是多发性硬化症。AI方法可以通过检查目前提供的护理卫生系统以及加速研究和创新来实现学习卫生系统,从而改善护理质量。但是,我们认为,无论是与研究,临床实践还是卫生系统政策有关的AI的进步至关重要,不是孤立地开发出来,而是与他们合作地实施“对“人”。与患者投入的科学实施是全球多发性硬化症(PROM)倡议的核心,将确保我们最大程度地利用AI对MS的人的潜在利益,同时避免后果。
摘要背景:关于转移性去势抵抗性前列腺癌 (mCRPC) 男性使用雄激素受体靶向药物 (ART) 阿比特龙和恩杂鲁胺治疗时间的临床实践数据很少且不一致。我们评估了 ART 治疗时间并研究了治疗时间的预测因素。材料和方法:使用 Kaplan - Meier 图和 Cox 回归评估了瑞典国家前列腺癌登记处 (NPCR) 子登记处患者概览前列腺癌 (PPC) 中 mCRPC 男性的 ART 治疗时间。为了评估 PPC 对治疗时间的代表性,与 NPCR 中在处方药登记处填写 ART 的所有男性进行了比较。结果:2015 年至 2019 年期间,PPC 中的 2038 名男性接受了 ART 治疗。未接受过化疗的男性中位治疗时间为阿比特龙 10.8 个月(95% 置信区间 9.1 – 13.1),恩杂鲁胺 14.1 个月(13.5 – 15.5)。使用多西他赛后,阿比特龙的治疗时间为 8.2 个月(6.5 – 12.4),恩杂鲁胺的治疗时间为 11.1 个月(9.8 – 12.6)。ART 治疗时间长的预测因素包括 ART 前 ADT 持续时间长、ART 开始时血清 PSA 水平低、无内脏转移、体能状态良好以及未曾使用过多西他赛。PPC 捕获了所有已开具 ART 处方的 NPCR 男性中的 2522/6337(40%)。根据处方药登记处填写的信息,PPC 男性接受 ART 治疗的时间中位数与 NPCR 所有男性相比略长,分别为 9.6 (9.1 – 10.3) 个月和 8.6 (6.3 – 9.1) 个月。结论:由于年龄较大、体能状态较差和合并症较多,临床实践中的治疗时间与已发表的 RCT 中的时间相似或更短。
大型视觉模型的发展,无明显的剪辑,已经催化了对有效适应技术的研究,特别着眼于软及时调整。联合使用,使用单个图像的多个增强视图来增强零击的概括,它正在成为互动的重要领域。这主要指导研究工作,以进行测试时间及时调整。相比之下,我们为t estime a u Megentation(MTA)引入了强大的m eanshift,该方法超过了基于及时的方法而无需进行此类训练程序。这将MTA定位为独立和基于API的应用程序的理想解决方案。此外,我们的方法不依赖于某些先前测试时间augting技术中使用的临时规则(例如,置信度阈值)来过滤增强视图。相反,MTA将每种视图的质量评估变量直接纳入其优化过程,称为inllielness评分。该分数通过寻求过程进行了共同优化,从而导致有效的训练和无参数方法。我们在15个数据集上广泛地标记了我们的方法,并演示了MTA的优势和计算效率。在零摄像机模型和最先进的几种方法的顶部轻松部署为插件模块,MTA显示了系统的和一致的改进。
