多模式成像研究的最新发现表明,在脊髓和大脑中的脊髓损伤的震中,区域的宏观结构病理变化。正在进行研究以确定这些移位的细胞和分子机制,这些移位目前知之甚少。研究表明,重点区域中的病理过程是多方面的。此过程涉及星形胶质细胞和小胶质细胞,这有助于神经纤维从直接影响区域传播的神经纤维的变性,并参与相互激活。结果,距脊髓损伤位置的区域有突触损失。反应性星形胶质细胞产生硫酸软骨素蛋白聚糖,可抑制轴突生长和损伤细胞。但是,偏远地区的神经元死亡仍然有争议。原发性损伤面积是释放到脑脊液中的许多神经毒性分子的来源。假定这些分子(主要是基质金属蛋白酶)破坏了血脊髓屏障,从而导致偏远地区的巨噬细胞前体浸润。活化的巨噬细胞分泌促炎性细胞因子和基质金属蛋白酶,这反过来诱导了星形胶质细胞和小胶质细胞,一种促炎的表型。另外,反应性小胶质细胞与星形胶质细胞一起分泌了许多促炎和神经毒性分子,这些分子激活了炎症信号通路,从而加剧了突触耗竭和神经系统降解。似乎很可能是慢性炎症和神经退行性之间的相互作用是远离病变中心的脊髓区域中病理过程的关键特征。遥远地区的病理变化应成为潜在治疗靶标的研究对象。
预印本(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此版本的版权所有者于 2025 年 1 月 29 日发布。;https://doi.org/10.1101/2025.01.29.635456 doi:bioRxiv 预印本
PTI Transformers LP,加拿大马尼托巴省温尼伯 ORCID:1. 0000-0002-1216-6513 doi:10.15199/48.2024.11.39 可再生能源收集器变压器摘要。太阳能发电站或风电场中的可再生能源集电变压器 (RCT) 将集电系统的电压转换为传输级电压。由于主要目标是提高电压,RCT 在此功能上与发电机升压 (GSU) 变压器相似,但有一些设计特点和操作特性使这些装置独一无二,例如典型的绕组配置星形-星形-埋置三角形,低压绕组通常通过中性点接地电抗器接地。设计必须考虑低压电流和电压中的谐波。抽象的。光伏站或风电场中的可再生能源站(RES站)的主变压器将来自主系统的电压转换为输电级电压。由于主要目的是提高电压,RCT 在这方面的功能与 GSU 变压器相似,但有一些设计特点和操作特性使这些装置独一无二,例如典型的三角形-星形绕组配置,低压绕组通常通过中性接地电感器接地。设计必须考虑低压电流和电压中谐波的存在。 (可再生能源发电站主变压器) 关键词:电力变压器、可再生能源发电站、过电压、谐波。可再生能源集电变压器 (RCT) 是一种专用电力变压器,它在太阳能发电站或风力发电场中,将电站集电系统的电压(通常为 34.5 kV)转换为传输电压水平,通常范围从 138 到 345 kV 或 500 kV。可再生能源站中 RCT 的位置如图 1 所示。虽然直接连接到逆变器的小功率变压器在论文和标准 [1, 2] 中有很好的描述,但集电变压器在已发表的参考文献或标准中并没有很好的描述。因此,本文的目标就是填补这一空白。图 1。集电变压器放置在集电母线和传输线之间;来自参考文献。 [1] 大多数可再生能源可能会出于不同的原因使用多个集电变压器,例如为了限制其物理尺寸(特别是为了运输或由于场地限制),或者利用电站设计理念的特点,例如分配负载或在故障期间在电站各部分之间转移负载,或紧急加载。由于 RCT 的主要目的是提高电压,因此该变压器的功能与发电机升压 (GSU) 变压器类似。然而,RCT 与 GSU 有许多区别,包括:(i)典型的绕组配置为星形-星形-埋地三角形,而 GSU 绕组采用星形-三角形连接,(ii)RCT 的低压绕组通常通过中性点接地电抗器 (NGR) 接地,而高压绕组
已评估了部分N-甲基-D-天冬氨酸受体(NMDAR)激动剂D-环甲烯(DCS),用于治疗多种精神疾病,包括痴呆,精神分裂症,抑郁症,抑郁症和暴露基于心理治疗的增强。大多数DC的潜在精神科应用(如果不是全部)的目标是增强或恢复认知功能,学习和记忆。它们的分子相关性是长期的突触可塑性;许多形式的突触可塑性取决于NMDA受体的激活。在这里,我们全面研究了通过DCS及其机制对海马中不同形式的突触可塑性的调节。我们发现,DCS在幼年大鼠的海马脑切片中阳性长期突触可塑性(长期突触增强,LTP和长期突触抑制)的长期突触可塑性(长期突触增强,LTP和长期突触抑制)的形式进行了正面调节。dcs与NMDAR的D-塞林/甘氨酸结合位点结合。对该部位的药理抑制作用阻止了LTP的诱导,而D-塞林/甘氨酸结合位点的激动剂增强了LTP,并且可以用功能代替LTP诱导范围。内源性D-丝氨酸最可能的起源是星形胶质细胞,其胞吐作用受星形胶质细胞代谢性谷氨酸受体(MGLUR1)调节。因此,NMDAR中的D-丝氨酸/甘氨酸结合位点是针对可塑性相关疾病的心理药物干预措施的主要目标。在与突触后神经元相邻的星形胶质细胞中的星形胶质细胞的功能消除,MGLUR1受体的抑制和G蛋白信号传导,阻止了NMDAR依赖性LTP和LTD的诱导。我们的结果支持增强DC和D-塞林介导的Gliotransersiss的双向依赖性海马突触可塑性的双向范围。
摘要:星形胶质细胞到神经元的重编程在再生医学中具有广阔的前景。为了了解 microRNA 在此过程中的功能,我们对 NeuroD1 过表达的人类星形胶质细胞进行了 RNA 测序。在这里,我们报告了 NeuroD1 诱导了两种 miRNA(miR-375-3p 和 miR-124-3p)以及许多神经元基因的急剧上调。进一步分析表明,miR-375-3p 靶向神经元 ELAVL 基因 (nELAVLs),这些基因编码一个 RNA 结合蛋白家族,也由 NeuroD1 上调。通过过表达和敲低实验,我们表明操纵 miR-375-3p 水平可以在 NeuroD1 介导的重编程过程中调节 nELAVLs 表达,并且 miR-375-3p 过表达促进细胞存活而不干扰神经元重编程过程。有趣的是,miR-375-3p 耐药性 ELAVL4 的过表达会诱导人类星形胶质细胞死亡,并消除 miR-375-3p 在重编程过程中促进细胞存活的作用。因此,我们提出 miR-375-3p 调节 NeuroD1 介导的神经元重编程过程中上调的 nELAVLs 表达水平,而 miR-375-3p 过表达通过减少细胞死亡来提高 NeuroD1 介导的重编程效率。
神经炎症是许多神经疾病疾病的共同特征。它促进了功能障碍的神经元 - 小胶质细胞 - 星形胶质细胞串扰,后者又将小胶质细胞保持在有效的反应性状态,通常会增强神经元损伤。未充分探索介导这种关键交流的分子成分。在这里,我们表明,分泌的卷曲相关蛋白1(SFRP 1)是细胞对细胞通信的多功能调节剂,是细胞串扰神经炎症的一部分。在急性和慢性神经炎症的小鼠模型中,SFRP 1(在很大程度上是星形胶质细胞衍生的)促进和维持小胶质细胞的活性,从而促进了慢性炎症状态。sfrp 1促进了缺氧诱导的因子依赖性炎症途径的成分的上调,并在较低程度上促进了核因子-kappa B.因此,我们提出SFRP 1充当神经炎性的星形胶质细胞到微糖放大器,这代表了在几种神经退行性疾病中抵消慢性炎症的有害效应的潜在有价值的治疗靶标。
此次最后一次彩排由位于凯旋门顶部的“星形”指挥和协调站负责监控,各飞机和直升机巡逻队的领导以及他们的二号队员将练习沿香榭丽舍大街游行。
创伤性脑损伤(TBI)是一个主要的公共卫生问题。每年在美国有超过250万人由于TBI而需要急诊室护理,而超过25万人需要住院[1]。TBI是儿童和年轻人死亡的主要原因,每年导致50,000多人死亡[1]。tbi也是残疾的主要原因,因为生存的个体经常患有持续的神经功能障碍。在任何严重程度的TBI之后,三分之一的人出现了长期残疾,而在其TBI后需要住院治疗的患者中,大多数人受伤后5年仍然处于中度至严重残疾[2,3]。尽管TBI引起的发病率和死亡率很高,但临床医生没有可用的神经保护疗法,目前的治疗仅限于支持性护理。继发性损伤反应途径,包括神经炎症,在损伤时触发,并有助于持续的神经变性和神经系统功能。TBI之后的纵向实验和临床研究都清楚地表明了进行性神经退行性变性和脑萎缩,突出了继发性损伤过程的影响[4,5]。 由于继发性伤害途径可能会持续数周和几个月,因此存在治疗窗口,在此期间可以预防进行性伤害。 确定可以防止TBI进展并改善患者,神经炎症和其他继发性损伤途径的新型疗法。TBI之后的纵向实验和临床研究都清楚地表明了进行性神经退行性变性和脑萎缩,突出了继发性损伤过程的影响[4,5]。由于继发性伤害途径可能会持续数周和几个月,因此存在治疗窗口,在此期间可以预防进行性伤害。确定可以防止TBI进展并改善患者,神经炎症和其他继发性损伤途径的新型疗法。