我们目睹了新的空间经济中新的“技术经济范式”的出现。在当前的“创新和沟通”范式中的企业家研究通过数字技术的负担和平台捕获了数字生态系统的共同创建。同样,新空间正在为新一代的太空企业家(称为Artropreneurs)创造机会,以通过太空技术实现的负担和平台共同创建生态系统。对于星形飞行员来说,提供的能力取决于空间技术的应用是用于在太空,在地球上还是在另一个市场中使用“地球”或“衍生”。此外,跨星形剂量群体的共同创建以及跨市场的技术的功能取决于它们相关的负担。通过探索空间及其相关技术的不同背景如何提供在整个天体社区中的共同创造和功能的新模型,本文旨在扩大企业家的功能和共同创造研究。©2023作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
现在普遍认为星形胶质细胞是突触传递的活跃参与者,因此中枢神经系统中整合信号通讯的神经中心观点正在转向神经星形中心观点。星形胶质细胞对突触活动作出反应,释放化学信号(神经胶质递质)并表达神经递质受体(G 蛋白偶联受体和离子型受体),因此在中枢神经系统中充当神经元信号通讯的共同参与者。G 蛋白偶联受体通过异源化进行物理相互作用,形成具有新的独特信号识别和转导途径的异源体和受体嵌合体,这种能力在神经元质膜上得到了深入研究,并改变了中枢神经系统中整合信号通讯的观点。纹状体神经元质膜上的腺苷 A2A 和多巴胺 D2 受体是通过异源化进行受体间相互作用的最著名例子之一,对生理学和药理学观点都有相关影响。这里我们回顾了天然 A2A 和 D2 受体也可以通过星形胶质细胞质膜上的异源聚合相互作用的证据。发现星形胶质细胞 A2A-D2 异源聚合体能够控制纹状体星形胶质细胞突起释放谷氨酸。本文讨论了纹状体星形胶质细胞和星形胶质细胞突起上的 A2A-D2 异源聚合体在控制纹状体谷氨酸能传递方面的潜在相关性,包括在精神分裂症或帕金森病等病理条件下谷氨酸能传递失调的潜在作用。
1阿普尔阿尔茨海默氏病研究所,威尔·康奈尔医学,纽约,纽约,纽约,10021,2 Feil家族大脑和思维研究所,纽约威尔康奈尔医学研究所,纽约,纽约,10021,3神经科学研究生计划,威尔·康奈尔医学法国67000,67000的Strasbourg大学和斯特拉斯堡大学中心,67000,6个国家德拉·雷·里切尔奇科学科学斯科斯科科学斯科斯科科学斯科斯科夫人和巴黎 - 萨克莱大学,巴黎 - 萨克莱大学,巴黎神经科学学院,91400,NEUROSCIERICE及91400年,纽约州萨克莱大学,诺斯特拉斯堡大学,91400和尼罗斯特大学,德克萨斯州奥斯汀78712和8 Riken脑科学中心,胶质神经元电路动力学实验室,Saitama,351-0198,日本
在21世纪的研究结束时摘要属于成年哺乳动物亚脑室内区(SVZ)的细胞,将神经干细胞(NSC)定为星形胶质细胞的亚型。在随后的几年中,许多研究进一步构成了这些NSC的特性,并将其与实质星形胶质细胞进行了比较。在这里,我们已经评估了迄今为止收集的证据,以确定将NSC分类为星形胶质细胞是否适当且有用。我们还使用了4个先前发布的数据集进行了元分析,这些数据集使用细胞分类和无偏的单细胞RNASEQ突出显示成年鼠NSC和小裂星形胶质细胞的独特基因表达蛋白。根据我们对星形胶质细胞与NSC的性质和功能的特性和功能的理解,从我们的比较转录组分析中,我们得出的结论是,将成年哺乳动物NSC作为星形胶质细胞分类为潜在的误导。从我们的角度来看,提到成年哺乳动物SVZ中的细胞,该细胞保留了生产新神经元和麦克罗利亚作为NSC的能力而不连接“星形胶质细胞样”一词的能力。”
结果:本研究纳入4例女性患者,年龄从8岁到44岁不等。1例患者的肿瘤位于右顶叶,另3例患者的肿瘤位于脊髓。组织学通常以星形母细胞的假菊形团和血管透明变性为特征。这些肿瘤表现出与传统颅内星形母细胞瘤相似的生长方式,4例患者的组织学表现均为高级别,表现为肿瘤细胞高密度区或坏死。免疫组化染色显示4例患者均表达OLIG2、EMA和波形蛋白,3例患者还表达GFAP和S-100。3例患者的Ki-67阳性指数约为15%,1例患者约为10%。使用分离探针的荧光原位杂交(FISH)显示3例患者存在EWRS1断裂,1例患者存在MN1断裂。进一步的DNA或RNA靶向双等位基因测序发现病例1存在EWSR1(外显子1-7)-BEND2(外显子2-14)融合,病例2存在EWSR1(外显子1-7)-BEND2(基因间)融合。病例3存在EWSR1(外显子1-7)-NUDT10(基因间)融合,病例4存在MN1(外显子1)-BEND2(外显子2)融合。EWSR1-NUDT10基因融合是星形母细胞瘤的一种新融合类型。患者的随访时间分别为76.5、17.6、33.7和61.3个月。3例在脊髓部位出现肿瘤复发,病例4出现多发性复发。
摘要:光遗传学已被用于调节星形胶质细胞活性并调节脑损伤后的神经元功能。活化的星形胶质细胞调节血脑屏障功能,从而参与脑修复。然而,光遗传学激活的星形胶质细胞对缺血性中风屏障功能变化的影响和分子机制仍不清楚。在本研究中,成年雄性 GFAP-ChR2-EYFP 转基因 Sprague-Dawley 大鼠在光血栓性中风后 24、36、48 和 60 小时接受光遗传学刺激以激活同侧皮质星形胶质细胞。使用免疫染色、蛋白质印迹、RT-qPCR 和 shRNA 干扰探索活化的星形胶质细胞对屏障完整性的影响及其潜在机制。进行神经行为测试以评估治疗效果。结果表明,光遗传学激活星形胶质细胞后,IgG 漏出、紧密连接蛋白间隙形成和基质金属肽酶 2 表达均减少( p <0.05)。此外,与对照组相比,光刺激星形胶质细胞可保护中风大鼠的神经元免于凋亡并改善神经行为结果( p <0.05)。值得注意的是,大鼠缺血性中风后光遗传学激活的星形胶质细胞中白细胞介素 10 的表达显著增加。抑制星形胶质细胞中的白细胞介素 10 会削弱光遗传学激活的星形胶质细胞的保护作用( p <0.05)。我们首次发现来自光遗传学激活的星形胶质细胞的白细胞介素 10 通过降低基质金属肽酶 2 的活性和减弱神经元凋亡来保护血脑屏障的完整性,这为缺血性中风急性期提供了一种新的治疗方法和靶点。关键词:星形胶质细胞、血脑屏障、白细胞介素 10、光遗传学、中风 引言 星形胶质细胞可以被动支持神经元的发育和存活,或主动调节突触传递和血脑屏障 (BBB) 的完整性 [1]。星形胶质细胞活化是缺血性中风的一个重要特征。活化的星形胶质细胞通过释放炎症因子(如 IL-6、TNF-α、IL-1α、IL-1β、干扰素 γ (IFNγ) 和自由基)发挥有害作用 [2]。它还可以通过释放
“神经退行性疾病”通常是指诸如阿尔茨海默氏病,亨廷顿氏病,各种共济失调和大量罕见的遗传疾病等疾病,这些疾病会导致神经元的逐渐丧失,认知和运动功能的丧失以及某些情况下,死亡。然而,神经退行性的迹象在癫痫和抑郁等疾病中也很明显。尽管“神经变性”一词显然意味着神经元的生存能力丧失,但现在普遍承认星形胶质细胞与这种过程密切相关。星形胶质细胞通过各种方式帮助神经元的弹性。一些研究表明,它们实际上可能是某些条件下病理机制的一部分。我们试图在所有病理状态中的星形胶质细胞与神经元之间的相互作用进行研究。星形胶质细胞保护神经元免受损害的机制,与小胶质细胞在处理退化神经元方面的合作以及疾病中星形胶质细胞的可塑性是本卷中潜在的主题。
1 加州大学圣地亚哥分校路德维希癌症研究所,加利福尼亚州拉霍亚 92093,美国;2 加州大学圣地亚哥分校医学系,加利福尼亚州拉霍亚 92093,美国;3 加州大学圣地亚哥分校癌症中心,加利福尼亚州拉霍亚 92093,美国;4 德克萨斯大学西南医学院神经病学系和医学系,德克萨斯州达拉斯 75390,美国;5 哈佛医学院丹娜法伯癌症研究所贝尔弗创新癌症科学研究所应用癌症科学中心,马萨诸塞州波士顿 02115,美国;6 哈佛医学院布莱根妇女医院医学系,马萨诸塞州波士顿 02115,美国;7 哈佛医学院丹娜法伯癌症研究所医学肿瘤学系,马萨诸塞州波士顿 02115,美国; 8 哈佛医学院丹娜法伯癌症研究所医学系和遗传学系,美国马萨诸塞州波士顿 02115;9 哈佛医学院布莱根妇女医院病理学系,美国马萨诸塞州波士顿 02115;10 哈佛医学院麻省总医院病理学系,美国马萨诸塞州波士顿 02115;11 纪念斯隆凯特琳癌症研究所神经外科系,美国纽约州纽约 10065;12 哈佛医学院丹娜法伯癌症研究所皮肤病学系,美国马萨诸塞州波士顿 02115;13 加利福尼亚大学圣地亚哥分校分子遗传学中心,美国加利福尼亚州拉霍亚 92093
通讯作者:Geidy E. Serrano,博士横幅Sun Health Research Institute 10515 W Santa Fe Drive,Bldg B,Bldg B,第3佛罗里达州Sun City,AZ 85351 PH:623-832-5608传真:623-832-5681 emage:623-832-5681电子邮件: https://orcid.org/0000-0002-9527-2011运行标题: