上下文。原始黑洞(PBHS)已被提议作为暗物质(DM)的潜在候选者,并近年来引起了显着关注。目标。我们的目标是深入研究PBH对气体性质的明显影响及其在塑造宇宙结构中的潜在作用。特别是,我们旨在分析不断发展的气体特性,同时考虑具有不同单色质量和不同数量的PBHs的存在。通过研究这种积聚产生的反馈效果,我们的最终目标是评估PBHs作为DM候选者的合理性。方法。我们开发了一个半分析模型,该模型在Z〜23。该模型可以对PBHS影响的气体的演变进行全面分析。我们的重点在于温度和氢丰度,并特别强调最接近光环中心的区域。我们探索位于质量窗口内的1、33和100m⊙的PBH质量,其中大量DM可能以PBH的形式存在。我们研究了由这些PBH组成的各种DM级分(F PBH> 10-4)。结果。我们的发现表明,由于气体特性中引起的显着变化,将排除质量为1m⊙的PBH和大于或等于10-2的PBH。同样,质量为33 m⊙和100 m⊙,而分数大于10-3。这些效应在距离光环中心最近的区域特别明显,可能导致晕空间内的星系延迟形成。
摘要趋化因子将白细胞导航调节至发炎的部位和特定的组织部位,因此可能有助于确保精确归巢细胞治疗产物。我们和其他人表明,非典型趋化因子受体2(ACKR2)缺陷小鼠(ACKR2 - / - )受到细胞系和自发小鼠模型中转移的发展。我们已经表明,这与ACKR2 - / - 天然杀伤细胞上的CCR2表达增强有关,从而使它们更有效地回家到表达CCR2配体的转移性沉积物中。在这里,我们证明了ACKR2 - / - 小鼠中的转移性抑制表型不是不存在ACKR2的直接效应。相反,增强的天然杀伤细胞CCR2表达是由乘客突变引起的,这些突变源于129个胚胎干细胞中ACKR2 - / - 小鼠菌株的产生。我们进一步证明,CCR2 +天然杀伤细胞的简单选择富含具有增强抗转移能力的细胞群。鉴于肿瘤对CCR2配体的广泛表达,我们的研究强调了CCR2是自然杀手型细胞肿瘤细胞疗法的潜在重要因素。
我们描述了一个简单的黑暗扇区结构,如果存在,该结构对直接检测暗物质(DM)有影响。深色水槽。一个深色水槽将能量密度从DM传输到没有明显促进DM密度的光线深色扇区状态。为例,我们考虑了一个光中性的fermionψ,该费米ψ仅通过交换重标量φ与DMχ相互作用。我们通过在DM Freeze-In模型中添加一个黑暗水槽的影响,其中χ偶联到浅色深色光子γ0与标准模型(SM)光子进行了运动混合。这种冻结模型(不存在下水道)本身就是进行正在进行的实验的基准。在某些情况下,该基准的文献包含错误。我们纠正预测并将其作为公共代码提供。然后,我们分析了深色水槽如何修改该基准,求解了耦合的玻尔兹曼方程,以实现黑区域的能量密度和DM产量。我们检查了深色水槽ψ对深色辐射的贡献;与现有数据的一致性限制了最大可达到的横截面。对于MeV -Oð10Gev粒之间的DM,添加深色水槽可以将直接检测横截面的预测添加到当前限制。
波浪般的,玻色粒暗物质候选者(如轴和暗光子)可以使用称为卤素菌的微波腔检测到。传统上,卤素由在TM 010模式下运行的可调铜腔组成,但欧姆损失限制了其性能。相比之下,超导射频(SRF)腔可以达到约10 10的质量因子,也许比铜腔好5个数量级,从而导致更敏感的暗物质检测器。在本文中,我们首先得出了吊带镜实验的扫描速率与负载的质量因子Q L成正比,即使腔带宽比暗物质晕线线窄得多。然后,我们使用非偏高的超高质量SRF腔进行了概念验证搜索。我们排除了深色光子暗物质,具有χ> 1的动力学混合强度。5×10 - 16对于M A0¼5的深色光子质量。35μEV,几乎通过一个数量级获得了最深的范围排除在波浪状的深色光子上。
我们根据一种直接检测低质量暗物质的新方法提出了光学机械深色仪器(ODIN)。我们考虑在光力学腔中与超流体氦气相互作用。使用有效的场理论,我们计算了在高度人口组成的,驱动的腔体模式下,暗物质从声子上散射的速率。这个散射过程将声子沉积到其基态的第二个声学模式中。然后,通过与泵激光器的光力相互作用将沉积的声子(μEV范围)转换为光子(EV范围)。该光子可以有效地检测到该光子,从而提供了一种敏感的探测kev比例暗物质的手段。我们提供了对背景的现实估计,并讨论了与此类实验相关的技术挑战。我们计算了关于暗物质的投影限制 - 暗物质质量的核子相互作用范围为0.5至300 keV,并估计将来的设备可以探测到低至Oð10-32cm 2的横截面。
超薄暗物质(ULDM)是领先的良好动机候选者之一,在粒子物理学和宇宙学标准模型之外,许多理论中都预测了这些候选。在物理和天文实验中搜索ULDM的兴趣越来越多,主要假设ULDM和正常物质之间还有其他相互作用。在这里我们证明,即使ULDM仅具有重力相互作用,它也应引起太阳系中的引力扰动,该引力扰动可能足够大,可以在未来的重力波(GW)激光干涉仪中引起可检测的信号。我们研究了米歇尔森时间 - 时间延迟干涉仪对各种自旋的ULDM的敏感性,并通过针对μHz频率的空间基GW检测器来探测具有质量m mass10-18 eV的向量ULDM。我们的发现表明,GW检测器可能会直接探测一些质量范围,否则否则挑战了。
1北京北京大学北京大学核物理和技术的物理与国家主要实验室2北京激光加速创新中心,北京北京大学,北京101400,中国3国际理论上物理学亚洲亚洲太平洋大学,中国科学院100190年,北欧科学院。 Blegdamsvej 17,2100丹麦哥本哈根5 CAS 5 CAS关键物理学,理论物理研究所,中国科学院北京学院,北京100190,中国6个体育科学学院,中国科学院,中国科学院,第中国北京100049年Yuquan Road 19a 19a Yuquan Road 7重离子物理学研究所,北京大学,北京100871,中国8高能源物理研究所,中国科学院100049,中国北京学院9,主要粒子加速和技术实验室。中国科学学院高能源物理学,中国100049,中国11北京量子信息科学学院,北京100193,中国12号高能物理中心,北京大学,北京大学100871,中国
我们提出了一种新方法,借助量子干涉显著提高基于量子比特的暗物质探测实验中的信号速率。各种量子传感器都具有探测波状暗物质的理想特性,而量子计算机中常用的量子比特是暗物质探测器的绝佳候选。我们证明,通过设计适当的量子电路来操纵量子比特,信号速率与 n 2 q 成比例,其中 nq 是传感器量子比特的数量,而不是与 nq 成线性关系。因此,在使用大量传感器量子比特的暗物质探测中,可以预期信号速率会显著增加。我们提供了一个量子电路的具体示例,该电路通过连贯地组合每个单独量子比特由于其与暗物质相互作用而产生的相位演变来实现这种增强。我们还证明该电路对失相噪声具有容错能力,失相噪声是量子计算机中的关键量子噪声源。这里提出的增强机制适用于各种量子计算机模式,只要与增强暗物质信号相关的量子操作可以应用于这些设备。