获奖后的成功:BFF 获得超过 500 万美元的外部投资,其中包括来自 ISS 计划的 250 万美元。快照:总部位于印第安纳州格林斯维尔的 Techshot, Inc. 是第一家在国际空间站 (ISS) 上 3D 打印有机产品的美国公司。该公司与 nScrypt, Inc. 合作开发的生物制造设施 (BFF) 可在太空中打印以克服地球重力的影响,地球重力会导致 3D 打印组织在自身重量下变形。Techshot 的 BFF 于 2019 年在 NASA SBIR/STTR 计划的支持下发射到国际空间站。此后,该公司一直与 NASA 和其他客户合作,对 BFF 的外部投资估值超过 500 万美元,其中包括来自 ISS 计划的 250 万美元。
本文研究了一种可能的解决方案,以采购未来太空探索任务所需的推进剂。这项研究检查了使用电磁发射器(EML)将用于推进剂生产的原材料从月球南极到NASA的Lunar Gateway的可行性。这个提议的空间站位于近汇度光环轨道(NRHO)的月球中,是NASA ARTEMIS计划的关键部分。便宜有效地从表面冰上采购月球氢将使该计划的成功和未来对太阳系的探索有益。本研究调查了月球EML有效载荷的发射要求。Agi Inc.的系统工具套件(STK)用于计算拦截网关所需的启动方位角,高度,幅度,时期和行程持续时间。该模型评估了有效载荷以及网关的径向,交叉轨道和轨道位置和速率,以确定它们在集合处的相对位置和速度。这项研究的结论表明,从Lunar South Pole进行一次发射是可行的,并以可变的发射条件为目标。提出了支持我们假设的证据,这表明可能无法与Rendezvous的空间站的状态向量相匹配。有效载荷将需要额外的推力能力,本文还探讨了这些建议。
使用多光纤互连解决方案来满足带宽要求和有效载荷应用中传输的数据量,同时又不影响重量和性能,这一点至关重要。为了使多光纤解决方案可用于恶劣环境下的空间应用,CNES、Thales Alenia Space (TAS) 和 Radiall 已指定、设计和认证了基于高密度 12 光纤 MT 套管的完整光学链路。认证整个解决方案的方法复制了产品在其运行条件下的真实条件。认证测试计划包括机械、热、排气和辐射测试,并且已成功完成。测试顺序已根据最新技术和恶劣环境下的预期性能进行了适当定义。执行了一个包含配接、振动、冲击和温度循环的测试文件和一个包含配接、振动、冲击和温度存储的测试文件,以确保在测试序列之后保持光学和机械性能。完整的光学链路由线束组成,结合了坚固的光学触点 (Q-MTitan™) 和 12 根抗辐射光纤。这些组件通过 8 或 10 腔多针面板馈通断开连接器连接。Q-MTitan™ 光学触点设计用于国防和航空航天市场使用的现成多针连接器的 8 号 Quadrax 腔体,例如 MIL-DTL-38999、ARINC 600、EPX EN4644 和 EN4165。这种成熟的触点已证明其作为航空航天工业标准 ARINC 846 基准的性能和价值。它具有紧凑、轻便和坚固的机身,包含并保护 MT 套圈,以确保在最苛刻的环境中实现最佳光学性能。触点可以端接在圆形电缆或带状光纤上,而无需增加总重量的特定配件。多针连接器的设计是为了在密度、成本和性能(如机械、热和辐射阻力)方面寻求最佳平衡。使用这些互连解决方案构建的线束以及使用抗辐射 (RadHard) 光纤和电缆已经按照与 CNES 和 TAS 合作制定的测试计划进行了测试和认证,以尽可能接近操作应用。
两个项目(Hermes-TP和Hermes-SP)为星座提供了三个完整的卫星(有效载荷和服务模块),目的是证明快速的GRB检测和本地化是可行的,该技术在板上微型飞机上的颠覆性技术是可行的ESA M级任务和NASA探险家任务),并且开发时间仅几年。 此外,意大利航天局批准并资助了对精神(空间行业 - 响应 - 智能 - 热纳米卫星)的参与。 由澳大利亚航天局支持并由墨尔本大学领导的Spirit Project,它将主持爱马仕(Hermes)的探测器,因此为爱马仕星座(Hermes Constellation)提供了第七个单位。ESA M级任务和NASA探险家任务),并且开发时间仅几年。此外,意大利航天局批准并资助了对精神(空间行业 - 响应 - 智能 - 热纳米卫星)的参与。由澳大利亚航天局支持并由墨尔本大学领导的Spirit Project,它将主持爱马仕(Hermes)的探测器,因此为爱马仕星座(Hermes Constellation)提供了第七个单位。
具有可重构群(遮阳板)任务的虚拟超分辨率光学器件是一种新颖的立方体形成望远镜任务,旨在研究太阳能电晕中的基本能量释放机制。遮阳板是最初在国家科学基金会(NSF)Cubesat Innovations Ideas Ideas实验室研讨会上构思的任务。该任务将使用两个6u立方体的角度分辨率在极端超紫罗兰(EUV)中观察到电晕,并使用两个6U立方体,它们相距40米,形成分布式望远镜。实现此类任务需要在衍射光学,卫星间通信,立方体推进和相对导航领域的关键技术。这些技术中任何一种的开发都是新颖的,但是所有这些技术结合起来都可以真正地使遮阳板使命。将这些技术巩固到立方体形式中,构成了机械和系统设计的挑战。本文重点介绍了遮阳板的初步有效负载设计,将关键技术组合为6U型的固有的挑战以及使有效负载设计成熟的关键下一步。与10所不同的大学一起工作,并预计在2023年末推出,遮阳板任务将展示Cubesats执行高精度冠状图像的能力,并将为未来的Cobesat群群铺平道路。
徽标品牌,产品,服务和流程名称在此处出现是其关联公司Elbit Systems Ltd.的商标或服务标记,或者在适用其他各自持有人的情况下。本文档中的所有信息仅用于一般信息,并且在不通知的情况下进行更改。©2018。此手册包含Elbit Systems和其他专有信息。EP20-MKT-057EP20-MKT-057
CISLUNAR政权可能被认为是从地球同步地球轨道(Geo)邻里(靠近固定轨道高度)到达地球月亮卢纳(Luna)的Lagrange点的区域,但该政权中的一些关键基因座将比其他地区更为居高。近线性光环轨道(NRHOS)和LUNA本身附近提供了相对稳定性,两个对齐的Lagrange点(L1和L2)也提供了相对的稳定性,L4和L5点提供了长期的轨道稳定性以及相对简单的对太阳能的访问。这些基因座,所有这些基因座都是月球网关站或长期科学安置的可能位置,以及将这些基因座连接的所有过境路线和通信接力站点成功地扩展到人类经济活动到太空中的近期未来的关键兴趣。
。cc-by-nc 4.0国际许可(未获得同行评审证明),他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本于2020年12月21日发布。 https://doi.org/10.1101/2020.12.12.18.423326 doi:biorxiv preprint
并促进寡核苷酸有效载荷的吸收和内化。通过将抗体的细胞和组织选择性与基于寡核苷酸的方法的选择性和效率相结合,Avidity Biosciences 的研究人员已经证明了调节