地中海果蝇紧急计划公告修正案 2024 年 8 月 28 日至 2024 年 12 月 18 日,加州食品及农业部 (CDFA) 确认,在阿拉米达县的弗里蒙特、纽瓦克和联合城共捕获了 71 只成年地中海果蝇 (Medflies) Ceratitis capitata (Wiedemann)。此外,三处土地上的果树已被确认受到地中海果蝇幼虫的侵扰。根据这些检测、害虫生物学、来自 CDFA 地中海果蝇科学咨询小组 (MedSAP) 的信息、州一级昆虫学家以及 CDFA 的“地中海果蝇 Ceratitis capitata (Wiedemann) 行动计划”,CDFA 得出结论,该地区存在地中海果蝇的侵扰。这种害虫对加州的自然环境、农业和经济构成了重大、明显和迫在眉睫的威胁。除非采取紧急措施,否则阿拉米达县和圣克拉拉县未来很有可能突然发现这种害虫。根据综合害虫管理原则,加州食品和农业部评估了可能的根除方法,并确定没有可用于从该地区消灭地中海果蝇的文化方法。此紧急计划公告有效期至 2025 年 8 月 15 日,这是根据地中海果蝇治疗方案的要求,在地中海果蝇的三个生命周期内实施治疗计划所需的时间。加州食品和农业部将采用生物和化学控制作为主要手段,并在有证据表明某处土地上存在繁殖种群时,通过移除寄主果实进行物理控制。发现上述地中海果蝇需要立即采取行动,以应对对加州自然环境、农业和经济的迫在眉睫的威胁。更具体地说,除了各种经济作物外,地中海果蝇还威胁着当地野生动物、私人和公共财产以及食品供应的损失和损害。由于在 2024 年 8 月 28 日至 2024 年 12 月 18 日期间发现的地中海果蝇的生命周期尚未结束,因此未来在阿拉米达县和圣克拉拉县突然发现地中海果蝇的可能性很高。因此,部长援引《公共资源法典》第 21080(b)(4) 条采取紧急行动,以防止上述损失和加州资源受损。地中海果蝇侵扰的治疗计划将按以下方式实施:
。CC-BY 4.0 国际许可证下提供(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2023 年 8 月 24 日发布。;https://doi.org/10.1101/2023.08.23.554397 doi:bioRxiv 预印本
果蝇Melanogaster已被确立为研究人类疾病的可靠模型。然而,此类研究的各种设计以及菌株的不同起源显着导致菌株之间的代谢和分子差异。帕金森氏病(PD)是一种神经退行性疾病,涉及多巴胺能神经元的丧失,导致各种运动和非运动症状,包括但不限于Bradykinesia,姿势不稳定,认知能力下降,认知能力下降和胆汁性营养不良。长期暴露于毒素(例如烤)可以诱导神经元细胞死亡。我们通过直接喂养烤烤面包酮的食物向果蝇Melanogaster野生型菌株开发了一种零星的PD模型,以前已证明该菌株会导致神经元细胞死亡,并用于模仿果蝇中的PD。在两种野生型菌株(俄勒冈-R和Canton-S)中暴露于鱼藤酮后,监测其攀爬能力和寿命的差异。我们发现,与年龄匹配的广州苍蝇相比,俄勒冈-R紫红酮暴露时的运动缺陷程度更高。我们还观察到,与俄勒冈-r蝇相比,广州蝇(烤面包酮喂养的和非洛诺酮)的生存百分比较低。但是,广州蝇中的攀爬缺陷并不像俄勒冈-r蝇中那样明显。在不同野生型果蝇菌株中涉及这种差异效应的机制尚待探索,并可能对属于不同人口统计学的PD患者的差异症状提供视角。
摘要 我们开发了一种多光子成像方法,通过完整的角质层捕捉行为苍蝇的神经结构和活动。我们的测量结果表明,苍蝇头部角质层在波长 >900nm 时具有惊人的高透射率,而通过角质层成像的困难是由于头部角质层下方的气囊和/或脂肪组织。通过压缩或去除气囊,我们通过完整的角质层对苍蝇大脑进行了多光子成像。我们的解剖和功能成像结果表明,2 光子和 3 光子成像在蘑菇体等浅表区域相当,但 3 光子成像在中央复合体等较深的区域更胜一筹。我们进一步展示了 2 光子通过角质层功能成像,可以对行为苍蝇蘑菇体 γ 叶的气味诱发钙反应进行短期和长期成像。这里开发的通过角质层成像方法延长了苍蝇体内成像的时间限制,并开辟了捕捉苍蝇大脑神经结构和活动的新方法。
* 共同第一作者 § 通讯作者:f.port@dkfz.de 和 m.boutros@dkfz.de 摘要 CRISPR-Cas 基因组工程通过以前所未有的简便性实现靶向基因组修饰,彻底改变了生物医学研究。在流行的模型生物果蝇中,基因编辑迄今为止完全依赖于原型 CRISPR 核酸酶 Cas9。其他 CRISPR 系统的出现可以扩大基因组靶空间,提供额外的调控模式,并能够在同一动物的不同细胞群中独立操作基因。我们在此描述了一个用于果蝇高效 Cas12a 基因编辑的平台。我们表明,来自 Lachnospiraceae 细菌的 Cas12a (而非 Acidaminococcus spec.)可以介导体内强大的基因编辑。与大多数 crRNA 结合时,LbCas12a 活性在较低温度下受到强烈抑制,因此只需调节温度即可控制基因编辑。 LbCas12a 可以直接利用紧凑的 crRNA 阵列,这种阵列比 Cas9 sgRNA 阵列更容易构建,从而有助于同时对多个靶位进行多重基因组工程。使用三个 crRNA 阵列靶向基因会导致功能丧失表型的诱导,其效率与最先进的 Cas9 系统相当。最后,我们表明 LbCas12a 的细胞类型特异性表达足以介导各种组织中严格控制的基因编辑,从而可以详细分析这种多细胞生物中的基因功能。Cas12a 基因编辑大大扩展了这种生物的基因组工程工具箱,并将成为对果蝇基因组进行功能注释的有力方法。这项工作还为在其他遗传上可驯服的生物中开发多重转基因 Cas12a 基因组工程系统奠定了基础。关键词:Cas12a、果蝇、Cas9、基因组工程、CRISPR、诱变
(A) 果蝇 (Drosophila melanogaster) 和果蝇 (D. yakuba) 中 eIF4E1 基因组邻域的同源性比较。细箭头表示果蝇 (D. melanogaster) (顶部) 和果蝇 (D. yakuba) (底部) 基因组中参考基因 eIF4E1 所在的 DNA 链。指向右侧的细箭头表示 eIF4E1 在果蝇 (D. melanogaster) 中位于正 (+) 链上,指向左侧的细箭头表示 eIF4E1 在果蝇 (D. yakuba) 中位于负 (-) 链上。指向与 eIF4E1 相同方向的宽基因箭头相对于细箭头位于同一链上,而指向与 eIF4E1 相反方向的宽基因箭头相对于细箭头位于相反链上。果蝇 (D. yakuba) 中的白色基因箭头表示与果蝇 (D. melanogaster) 中相应基因的直系同源。 D. yakuba 基因箭头中给出的基因符号表示 D. melanogaster 中的直系同源基因,而基因座标识符特定于 D. yakuba。(B)GEP UCSC Track Data Hub 中的基因模型(Raney 等人,2014 年)。D. yakuba 中 eIF4E1 的编码区显示在用户提供的 Track(黑色)中;CDS 用粗矩形表示,内含子用细线表示,箭头表示转录方向。后续证据轨迹包括 NCBI RefSeq 基因的 BLAT 比对(深蓝色,D. yakuba 的 Ref-Seq 基因比对)、D. melanogaster 蛋白质的 Spaln(紫色,D. melanogaster 的 Ref-Seq 蛋白质比对)、TransDecoder 预测的转录本和编码区(深绿色)、成年雌性和成年雄性的 RNA-Seq(分别为红色和浅蓝色;D. yakuba 的 Illumina RNA-Seq 读段比对)以及使用 D. yakuba RNA-Seq (SRP006203 - Graveley et al, 2010) 通过 regtools 预测的剪接点。显示的剪接点分别具有 232、500-999 和 >1000 的读取深度,支持读取为粉色、棕色和红色。 (C) 果蝇 (D. melanogaster) 中的 eIF4E1-PB (x 轴) 与果蝇 (D. yakuba) 中的直系同源肽 (y 轴) 的点图。左侧和底部表示氨基酸编号;顶部和右侧表示 CDS 编号,CDS 也以交替颜色突出显示。序列相似性降低的区域用红色圈出。 (D) 果蝇 (D. melanogaster) 中的 eIF4E1-PC (x 轴) 与果蝇 (D. yakuba) 中的直系同源肽 (y 轴) 的点图。序列相似性降低的区域用红色圈出。
图2幼虫SEZ的感觉域:长度截面视图。(a,b)幼虫晚期SEZ的示意性侧面视图(a)和腹侧视图(b)。感觉隔室的颜色编码如(a)底部的钥匙所述。进入神经胶质的神经是阴影灰色的;神经组边界和柱状神经胶质结构域由孵化线表示。(c - e)用PEB-GAL4> UAS-MCD8-GFP(绿色;感觉轴突)标记的第三龄幼虫标本的共聚焦部分的Z-Projections。抗神经毒素(洋红色)标记次生谱系和区域; Neuropil在所有面板中均由抗DN-钙粘蛋白(蓝色)标记。(c)中央神经胶质结构域的副臂板z预测。(d,e)表面水平的水平投影(d;神经皮腹面上方约10米)和中央水平(E;腹表面上方约20 l m;参见面板H)。孵化的线划分柱神经型结构域的边界,如随附的纸张所定义(Hartenstein等,2017)。在PEB-GAL4阳性区域的(E)点中的箭头从CSC感觉域继续向前向中央trito-Cerebrum前进; (e)中的箭头指示通过触角神经进入的感觉传入,然后绕过触角(Al)到达tritoceRebrum。(f,g)。第三龄幼虫SEZ晚期的副臂切片(F)和数字旋转的额叶(G)的Z-projctions显示了PEB-GAL4阳性感觉末端(绿色)和纵向轴突段与Anti-Fasticlin II(Magenta)标记的纵向轴突。绿色孵化线表示(d)和(e)中显示的水平平面。(H)幼虫SEZ的示意性横向视图,说明了该图和图3中的面板(d,e)中显示的Z射击平面。Blue hatched lines, oriented perpendicularly to the neuraxis and roughly parallel to neuromere boundaries (grey hatched lines), represent frontal planes at level of anterior half of prothoracic segment (T1ant), posterior half of prothoracic segment (T1post), tritocerebrum (TR), mandibula (MD), maxilla (MX), and labium (lb),图3的面板(a - f)中显示。bar:25 L m(c - g)
此预印本版的版权持有人于2023年2月8日发布。 https://doi.org/10.1101/2023.02.07.527284 doi:Biorxiv Preprint
果蝇心管似乎很简单,但它具有明显的解剖复杂性,并包含高度专业的结构。实际上,扁平心管的发育与哺乳动物心脏发育的最早阶段相似,而驱动这些过程的分子遗传机制在平流和人类之间高度保守。结合了植物的无与伦比的遗传工具和各种技术来分析活性心脏的结构和功能,这些属性使果蝇成为研究人类心脏发育和疾病的宝贵模型系统。这种观点着重于植物和人类心之间的功能和生理相似性。此外,它讨论了使用频率的当前局限性,并有望扩大果蝇作为研究人类心脏病的研究模型的能力。