点击购买,资源将自动在新窗口打开.
获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
图 2. 网络扰动的影响。A. 半脑中的每个突触都有一个置信度分数,表明自动识别它们的机器学习算法的置信度。我们通过排除置信度分数低于某个阈值的突触来扰动网络。扰动网络中每条边的权重都是其原始权重的一小部分;这里显示的是这些权重比的分布。这种扰动导致整体边缘变弱,更高的阈值也会切断更多边缘(在 0.0 的箱中计数)。B. 扰动网络中发现的社区数量与原始网络中的数量相比。灰线表示相等。在更高的分辨率尺度下,随着扰动图变得弱连接,相对于原始网络发现了更多的簇。
主要关键词