氧化物半导体重新引起了人们对用于单片三维 (3D) 集成的互补金属氧化物半导体 (CMOS) 后端 (BEOL) 兼容器件的兴趣。为了获得高质量的氧化物/半导体界面和体半导体,提高氧化物半导体晶体管的性能至关重要。据报道,原子层沉积 (ALD) 氧化铟 (In 2 O 3 ) 具有优异的性能,例如高驱动电流、高迁移率、陡亚阈值斜率和超薄沟道。在本文中,使用 C – V 和电导方法系统地研究了 ALD In 2 O 3 晶体管的 MOS 栅极堆栈中的界面和体陷阱。从 C – V 测量中的积累电容直接获得了 0.93 nm 的低 EOT,表明高质量的栅极氧化物和氧化物/半导体界面。通过 TCAD 对 C – V 和 G – V 特性的模拟,证实了 In 2 O 3 块体中亚带隙能级的缺陷是造成 GP / ω 与 ω 曲线中电导峰的原因。从 C – V 测量中提取了 1×10 20 /cm 3 的高 n 型掺杂。使用电导方法实现了 3.3×10 20 cm − 3 eV − 1 的高亚带隙态密度 (DOS),这有助于实现高 n 型掺杂和高电子密度。高 n 型掺杂进一步证实了通道厚度缩放的能力,因为电荷中性水平在导带内部深度对齐。
通过在各种开关条件下进行长期测试,研究了英飞凌 CoolSiC™ MOSFET 的这种现象的特点。数据显示,开关应力会导致 V GS(th) 随时间缓慢增加。然而,无论选择何种参数,都从未观察到由开关引起的负 V GS(th) 漂移。在相同工作条件下承受应力的不同器件的 V GS(th) 漂移值相似。阈值电压 V GS(th) 的增加会降低 MOS 沟道过驱动 (V GS(on) – V GS(th) ),因此可以观察到沟道电阻 (R ch ) 的增加。这种现象在公式 [1] 中描述,其中 L 是沟道长度,W 是沟道宽度,μ n 是自由电子迁移率,C ox 是栅极氧化物电容,V GS(on) 是正导通状态栅极电压,V GS(th) 是器件的阈值电压 [2]。
由于材料之间的晶格错误匹配,SI底物上窄带III – V材料的大规模整合仍然是一个挑战。[1,2]纳米级开口的外延生长降低了源自III – V/SI界面以传播到活动设备的缺陷的可能性,并证明了表现优势。[3]其他剩余的挑战是模式技术,[4]小型大小,高模式密度和经济高效的处理具有吸引力。高密度模式的一种可能的光刻溶液是块共聚物(BCP)光刻。[5–7]该技术依赖于自组装,这意味着该分辨率不是由clas的局限性设置的,例如辐射波长或接近度效应。[8,9] BCP光刻分辨率极限主要是由其总体聚合度和组成块不信用的程度设定的。[10]该技术是低成本的,允许在高图案密度下转移图案转移 - 至少至12 nm螺距。[11,12]一种特殊的材料,聚(苯乙烯) - 块-poly(4-乙烯基吡啶)(PS-B -P4VP),是所谓的高χBCP,即块之间具有很高的缺失性,这使自组件能够最低10 nm lamelar powd。[13]通过控制聚合物分子量,聚合物块的不混溶,聚合物块的体积分数,底物表面能和表面形象,如果向聚合物链提供足够的迁移率,则可以实现自组装。[14]可以通过添加热量来提供所需的迁移率,[15]通过介入聚合物可溶性蒸气,[16,17]或两者的组合。[18]许多设备应用程序受益于模式对齐,为此,可以使用定向自组装(DSA)来控制模式的定位。[5,6,19–22]然后,通常使用电阻的电子或光子暴露创建引导模式,并且指导是通过改变表面能量或创建不同地形来完成的。[19]
摘要:栅极绝缘体是决定石墨烯场效应晶体管 (GFET) 性能的最重要因素之一。栅极电压对导电通道的良好静电控制需要较薄的栅极氧化物。由于缺乏悬挂键,通过原子层沉积 (ALD) 工艺生长的栅极介电膜通常需要种子层。种子层可实现介电膜的高质量沉积,但可能导致最终介电膜厚度大幅增加。针对该问题,本文提出了一种改进工艺,在原子层沉积之前使用蚀刻溶液去除自氧化的 Al 2 O 3 种子层,Al 2 O 3 残留物将提供石墨烯表面的成核位点。受益于电介质膜厚度的减小,与使用标准 Al 蒸发种子层方法的 GFET 相比,使用此方法作为顶栅电介质膜沉积工艺的 GFET 的跨导平均增加了 44.7%。
AlGaN/GaN高电子迁移率晶体管(HEMT)或金属绝缘体半导体HEMT(MIS-HEMT),凭借优越的极化诱导高迁移率二维电子气(2DEG),因其高开关速度、低寄生参数和低导通电阻而受到广泛关注,并在高频射频和功率开关应用方面都取得了公认的成功[1-4]。通常在厚钝化电介质(如SiNx)上设置栅极和/或源极场板,以减轻栅极漏极区域的高电场并获得更高的击穿电压[5-7]。它们也有助于抑制表面态引入的电流崩塌[5,8]。然而,场板结构将引入额外的寄生电容,导致更高的VDS×IDS功率损耗和更长的开关持续时间。此外,钝化层还会引入钝化电介质/(Al)GaN界面态,甚至电介质本身的体态,它们的捕获/去捕获过程会引起寄生电容的动态漂移,导致实际应用中开关转换紊乱,dV/dt控制失效[9-11]。
摘要:门控ZnO纳米线场发射阵列在平板X射线源、光电探测器等大面积真空微电子器件中有着重要的应用。由于应用需要高像素密度的场发射阵列,因此需要研究像素密度对门控ZnO纳米线场发射性能的影响。本文模拟了在保持横向几何参数成比例的情况下不同像素尺寸下同轴平面门控ZnO纳米线场发射阵列的性能,获得了发射电流和栅极调制随像素尺寸的变化曲线。利用所获得的器件参数,制备了同轴平面门控ZnO纳米线场发射阵列。场发射测量结果表明,当栅极电压为140 V时,制备的ZnO纳米线场发射阵列的电流密度为3.2 mA/cm 2,跨导为253 nS,表明栅极控制有效。性能的提高归因于优化的栅极调制。
硅基氮化镓高电子迁移率晶体管 (HEMT) 以其低成本、大面积应用等优势在功率器件应用领域引起了广泛关注 [1]。近年来,双向开关在轧机、电梯、风力发电等许多工业双向功率转换应用中备受青睐。此外,常闭单向 HEMT 是实现高性能双向开关的重要器件 [2,3]。常闭单向 HEMT 通常通过在 HEMT 的漏极中嵌入肖特基势垒二极管 (SBD) 来实现。目前已经采用了氟注入或金属氧化物半导体技术。然而,在常闭单向 HEMT 中尚未见具有良好阈值电压 (V th ) 可控性和稳定性的 p-GaN 栅极技术 [4] 的报道。此外,凹陷式肖特基漏极[5]和场板技术[6]可以为实现具有小开启电压(V on )、高击穿电压(BV)和良好动态性能的单向HEMT提供相关参考。本研究通过实验证明了一种具有凹陷肖特基漏极和复合源漏场板的单向p-GaN HEMT(RS-FP-HEMT)。研究并揭示了漏极电压应力对动态性能的影响。实验。图1(a)和(b)分别显示了传统的带欧姆漏极的p-GaN HEMT(C-HEMT)和提出的RS-FP-HEMT的示意横截面结构。这两个器件都是在GaN-on-Si晶片上制造的。外延结构由 3.4 µ m 缓冲层、320 nm i-GaN 沟道层、0.7 nm AlN 中间层、15 nm Al 0.2 Ga 0.8 N 阻挡层和 75 nm p-GaN 层(Mg 掺杂浓度为 1 × 10 19 cm −3)组成。器件制造首先通过反应离子刻蚀 (RIE) 形成 p-GaN 栅极岛。然后,蒸发 Ti/Al/Ni/-Au 金属堆栈并在 N 2 环境中以 850 ◦C 退火 30 秒。形成凹陷的肖特基漏极
摘要 首次展示了通过剥离技术在 SiO 2 / Si 衬底上制备的纳米膜三栅极 β -氧化镓 ( β -Ga 2 O 3 ) 场效应晶体管 ( FET )。通过采用电子束光刻技术,可以定义最小尺寸特征,覆盖通道宽度为 50 纳米。为了在 β -Ga 2 O 3 和栅极电介质之间获得高质量的界面,利用原子层沉积的 15 纳米厚的氧化铝 ( Al 2 O 3 ) 和三甲基铝 ( TMA ) 自清洁表面处理。制备的器件表现出极低的亚阈值斜率 ( SS ),为 61 mV dec − 1 ,高的漏极电流 ( I DS ) 开/关比为 1.5 × 10 9 ,以及可忽略不计的传输特性滞后。我们还通过实验证明了这些器件的稳健性,在高达 400°C 的温度下测量了电流-电压(I-V)特性。
摘要 — 商用碳化硅 (SiC) 功率金属氧化物半导体场效应晶体管 (MOSFET) 的栅极氧化物可靠性对其应用至关重要。恒压时间相关电介质击穿 (TDDB) 测量通常用于评估正常运行下 SiC 功率 MOSFET 的电介质故障时间。最近提出了一种基于氧化物隧穿电流行为的电荷击穿方法来预测电介质故障时间。该方法耗时较少,但要求器件的氧化物漏电流行为遵循通用包络线。这项工作比较了电荷击穿方法和恒压 TDDB 方法对商用 1.2 kV SiC MOSFET 的预测故障时间。结果表明,在低氧化场 (E ox < 9 MV / cm ) 下应用的恒压 TDDB 方法对器件寿命的预测最为保守。