本研究研究并比较了不同热处理 (HT) 对采用激光粉末床熔合 (L-PBF) 和激光粉末定向能量沉积 (LP-DED) 技术制备的 Monel K500 的微观结构和力学性能的影响。由于制备过程中诱导的高冷却速度,制备的 Monel K500 试样表现出树枝状微观结构和元素微偏析。使用四种不同的 HT 程序(包括热等静压 (HIP)、固溶退火 (SA) 和时效)研究了文献中提出的 HT 对锻造 Monel K500 的适用性。使用室温单轴拉伸试验评估试样的力学性能。使用扫描电子显微镜分析了 HT 过程中试样的微观结构演变。对于所有研究的 HT 条件,与 LP-DED 试样相比,L-PBF Monel K500 试样始终表现出更高的强度和更低的延展性。 HT 工艺包括在 1160°C 下以 100 MPa 的压力进行 3 小时的 HIP、在 1100°C 下进行 15 分钟的 SA,以及在 610°C 下进行 16 小时、在 540°C 下进行 6 小时和在 480°C 下进行 8 小时的三步时效,从而使 L-PBF 和 LP-DED 制备的 Monel K500 均具有最高强度。
研究发现,通过激光粉末床熔化增材制造 (LPBF) 熔化 316 L 不锈钢后,从熔池中喷出的飞溅颗粒具有在雾化 316 L 粉末中未观察到的形貌。该飞溅由大球形颗粒、高度树枝状的表面、带有吸积液体盖子的颗粒以及在凝固前由液带固定在一起的多个单个颗粒的聚集体组成。本研究的重点是另一种独特的飞溅形貌,它由较大的球形颗粒组成,其表面氧化斑点表现出广泛的表面结构分布,包括有组织的图案。使用多种成像技术对具有有组织的表面氧化物图案的飞溅颗粒的表面和内部颗粒特征进行了表征。观察结果如下:1)斑点位于飞溅颗粒表面,未明显渗透到内部,2)斑点为非晶态,富含硅(Si)-锰(Mn)-氧(O),3)颗粒和斑点之间存在两部分富含铬(Cr)-O的层,4)斑点的顶面存在富含Cr-O的形态特征,5)飞溅颗粒的成分与316L一致,但远离斑点处飞溅颗粒中的Si含量似乎有所降低,6)飞溅颗粒内部存在小的富Si球形颗粒。
6 巴基斯坦木尔坦教育大学化学系 7 巴基斯坦拉合尔兽医学大学生物科学研究所 *通讯作者:Sabarashid440@gmail.com 摘要 生物技术和兽医学只是纳米科学和纳米技术可用于开展研究和寻找应用的几个领域。该应用在畜牧业和兽医护理中相当新颖。纳米技术具有巨大的潜力,不仅可以影响我们的生活方式,还可以影响我们如何进行兽医治疗,通过使用纳米材料提高家畜的安全性、生产力和农民收入。纳米技术的现状和突破被用于改善动物生长促进和产量。为此,纳米粒子被用作替代抗菌剂,以对抗抗生素使用和检测有害细菌的上升趋势。此外,纳米粒子还被用作药物输送剂。纳米粒子还被用作具有更好功能和改进特性的新药和疫苗候选物,用于诊断、治疗、饲料添加剂、营养输送、生殖辅助、生产补充剂、药剂,最后,各种功能化的纳米粒子,包括脂质体、聚合物纳米粒子、树枝状聚合物、胶束纳米粒子和金属纳米粒子,将用于改善食品质量。从成本和收益可用性来看,纳米技术似乎非常适合兽医应用。本研究的主要目标是讨论纳米技术在兽医学中的一些最相关的当前和未来元素。关键词兽医学、纳米粒子、动物生产、抗病毒药物
摘要:结直肠癌 (CRC) 是全球第三大常见癌症,转移性 CRC 是一种致命疾病。受 CRC 感染的组织显示出几种分子标记,可用作新策略来创造治疗该疾病的新方法。肝脏和腹膜是转移最常发生的地方。一旦肿瘤转移到肝脏,腹膜癌病通常被视为该疾病的最后阶段。然而,近 50% 的腹膜癌病 CRC 患者没有肝转移。由于该疾病在晚期对现有治疗选择的反应不佳,并且需要在早期进行准确诊断,因此必须开发新的诊断和治疗方法。纳米技术中可能发现许多独特而神奇的纳米材料,它们有望用于诊断和治疗。多种纳米材料和纳米制剂,包括碳纳米管、树枝状聚合物、脂质体、二氧化硅纳米颗粒、金纳米颗粒、金属有机骨架、核壳聚合物纳米制剂和纳米乳剂系统等,可用于 CRC 的靶向抗癌药物输送和诊断目的。治疗诊断方法与纳米医学相结合已被提议作为改善 CRC 检测和治疗的革命性方法。本综述重点介绍了用于 CRC 检测和治疗的纳米平台开发的最新研究、潜力和挑战。
过去 30 年中,随着我们对致癌过程、细胞生物学和肿瘤微环境的认识不断加深,成功的癌症治疗方法的数量显著增加 [ 1 , 2 ]。然而,尽管在临床前和临床研究方面投入了持续的努力,但许多癌症仍然致命。提高癌症患者生存率的方法之一是靶向递送抗癌药物。生物医学和生物技术的进步导致了有效药物载体的发现和开发,如脂质体、树枝状聚合物以及金和磁性纳米粒子 [ 3 – 6 ]。这些新型制剂与传统制剂的主要区别在于,它们是否适合开发将药物靶向递送到特定组织、细胞甚至细胞内细胞器的技术。靶向给药的本质在于药物容器(载体)的表面带有经过修饰的药物或分子,这些药物或分子具有可被靶细胞受体识别的功能基团。叶酸修饰是一个典型的例子,因为它能被肿瘤细胞主动吸收[7-9]。抗体和适体是识别靶细胞表面的通用分子[10-12]。得益于基础生物医学研究的进步,细胞的抗原特征变得越来越详细,使我们能够根据细胞表面特征区分不同细胞。口服或肠胃外给药的药物分布在整个身体,只有一小部分到达目标区域。因此,靶向给药方法可以减少剂量
摘要:难熔高熵合金是一种很有潜力的高温结构材料,为获得高强度的难熔高熵合金,在NbMoTiVW难熔高熵合金中添加不同量的Si,研究了Si对NbMoTiVWSi x 合金的相组成、组织特征和力学性能的影响。结果表明:当Si添加量为0、0.025和0.05(摩尔比)时,合金由晶间区的初生BCC和二次BCC组成;当Si添加量增加到0.075和0.1时,形成了包括硅化物相和二次BCC相的共晶组织。初生BCC相呈现树枝状形貌,加入Si使其细化;当Si添加量由0增加到0.1时,晶间区的体积分数由12.22%增加到18.13%。 Si的加入使NbMoTiVW合金的抗压强度由2 242 MPa提高到2 532 MPa,屈服强度也随着Si的加入而提高,NbMoTiVWSi 0.1的屈服强度达到最大值2 298 MPa,但合金的断裂应变由15.31%降低到12.02%。随着Si的增加,合金的断裂机制由韧性和准解理混合断裂转变为解理断裂。Si的加入使合金的强化作用归因于初生BCC相的细化、次生BCC相的体积分数的增加以及共晶组织的形成。
金属增材制造(MAM)技术在制造与再制造行业中得到广泛应用,微观组织模拟逐渐凸显其重要性。传统的凝固微观组织模拟方法在MAM应用中都有其优缺点。本文建立了一种确定性凝固微观组织模型,即“侵入模型”,以避免传统方法的本质缺陷。该模型不模拟各个柱状晶粒的生长动力学或推导变量的场形式,而是关注相邻双晶之间的相互作用。在双晶系统中,晶界从热梯度方向的倾斜被理解为一个晶粒向另一个晶粒的瞬时侵入行为,而MAM形成过程中的竞争性晶粒生长行为则是双晶系统中所有侵入行为的总结。为了填补快速凝固理论的空白,利用人工神经网络(ANN)建立了快速定向凝固条件下各向异性生长效应的数据库。以采用线材送料定向能量沉积 (DED) 制备的具有完整树枝状柱状晶粒 (原始 β 晶粒) 的 Ti6Al4V 薄壁样品为基准,测试了新模拟模型的有效性。沿堆积方向重构的原始 β 晶粒的晶粒几何结构与模拟结果具有很好的一致性。在满足应用范围的情况下,该模型还可以应用于 MAM 的其他情况或与各种模型结合,以实现实时凝固晶体学特征预测。关键词:增材制造;微观结构;建模;凝固
全身化疗对三阴性乳腺癌 (TNBC) 有效,但通常伴有严重的副作用。本文,我们报告了一种针对促黄体激素释放激素 (LHRH) 受体且对肿瘤微环境有响应的纳米颗粒系统,可选择性地将化疗药物递送至 TNBC 细胞。该递送系统(称为“LHRH-DCM”)包含聚乙二醇和树枝状胆酸作为胶束载体、可逆胶束内二硫键作为氧化还原响应交联,以及合成的高亲和力 (D-Lys)-LHRH 肽作为靶向部分。LHRH-DCM 表现出高药物负载效率、最佳粒径、良好的胶体稳定性和谷胱甘肽响应性药物释放。正如预期的那样,LHRH-DCMs 通过受体介导的内吞作用更有效地内化到人 TNBC 细胞中,当用紫杉醇 (PTX) 封装时,对这些癌细胞的细胞毒性比非靶向对应物更强。此外,近红外荧光和核磁共振成像表明,LHRH-DCMs 促进了三种不同的乳腺癌动物模型中的肿瘤分布和有效载荷的渗透,包括细胞系来源的异种移植 (CDX)、患者来源的异种移植 (PDX) 和转基因乳腺癌。最后,体内治疗研究表明,在原位 TNBC 模型中,PTX-LHRH-DCMs 的表现优于相应的非靶向 PTX-DCMs 和目前的临床制剂 (Taxol®)。这些结果为 TNBC 的精准药物输送方法提供了新的见解。
收稿日期:2017 年 1 月 X 日;修订日期:2017 年 2 月 X 日;接受日期:2017 年 3 月 X 日 摘要 增材制造 (AM) 因其高材料利用率和产品设计灵活性而受到越来越多的关注。WAAM 的特点是能够管理各种金属材料和高沉积速度。然而,它的形状精度低于通过其他 AM 工艺积累的形状精度,并且需要精加工作为后处理。此外,由金属组成的 AM 积累由于反复熔化和快速凝固而具有复杂的热历史。因此,使用 SUS316L 奥氏体不锈钢,其积累的微观结构中会发生树枝状生长。因此,与等粒结构相比,不锈钢的机械性能(例如延展性和屈服强度)是各向异性的。因此,我们在此提出了一种结合线材和电弧增材制造 (WAAM) 和精加工系统的新系统。在该方法中,当熔融金属凝固时,通过旋转工具进行精加工。使用新系统进行实验,以抑制 WAAM 累积产生的各向异性微观结构。作为旋转工具,使用切削工具和摩擦搅拌抛光 (FSB) 工具。进行微观结构观察和 X 射线衍射分析以评估累积的各向异性。使用新系统,可以抑制累积中的枝晶生长。通过将上述同时处理系统应用于 WAAM 沉积的最外层,预计可以通过表面改性提高疲劳强度并简化精加工工艺。 - 关键词:线材和电弧增材制造、定向能量沉积、X 射线衍射分析、精加工工艺、切削、摩擦搅拌抛光
锌金属电池 (ZnBs) 因其在水性电解质中的可操作性、Zn 含量丰富和可回收性而安全且可持续。然而,Zn 金属在水性电解质中的热力学不稳定性是其商业化的主要瓶颈。因此,Zn 沉积 (Zn 2 + → Zn(s)) 不断伴随着氢析出反应 (HER) (2H + → H 2 ) 和树枝状生长,进一步加剧了 HER。因此,Zn 电极周围的局部 pH 值增加并促进 Zn 上形成不活跃和/或导电性差的 Zn 钝化物质 (Zn + 2H 2 O → Zn(OH) 2 + H 2 )。这加剧了 Zn 和电解质的消耗并降低了 ZnB 的性能。为了推动 HER 超越其热力学电位(pH 0 时 0 V vs 标准氢电极 (SHE)),水包盐电解质 (WISE) 的概念已用于 ZnBs。自 2016 年发表第一篇关于 ZnB WISE 的文章以来,这一研究领域不断取得进展。本文概述并讨论了这一有希望加速 ZnBs 成熟的研究方向。本综述简要介绍了 ZnBs 中传统水性电解质的当前问题,包括 WISE 的历史概述和基本理解。此外,还详细介绍了 WISE 在 ZnBs 中的应用场景,并描述了各种关键机制(例如副反应、Zn 电沉积、金属氧化物或石墨中的阴离子或阳离子插入以及低温下的离子传输)。