。CC-BY 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2020 年 12 月 22 日发布。;https://doi.org/10.1101/2020.12.22.423985 doi:bioRxiv 预印本
©作者2023。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。Creative Commons公共领域奉献豁免(http://creativecom- mons.org/publicdomain/zero/zero/1.0/)适用于本文中提供的数据,除非在信用额度中另有说明。
Espinosa-Carrasco 等人最近发表的一篇论文 1 阐明了肿瘤内免疫三联体(由 CD4 + T 细胞、CD8 + T 细胞和树突状细胞 (DC) 组成的独特集群)在介导有效的抗肿瘤反应中的关键作用。这些三联体确保 CD8 + T 细胞通过相同的 DC 介导从 CD4 + T 细胞获得必要的帮助,从而有效地靶向和摧毁癌细胞。该文章的新颖见解表明,重点应从增加免疫细胞数量转移到优化它们在肿瘤微环境中的相互作用。这项开创性的研究不仅强调了 CD4 + T 细胞和 DC 的关键作用,而且突出了肿瘤微环境中免疫细胞亚群之间错综复杂的相互作用。先前的研究已经揭示了 CD4 + T 细胞在支持 CD8 + T 细胞反应中的重要性 2 。肿瘤微环境中免疫细胞的空间定位和相互作用的重要作用也得到了强调 3,4 。过继性 T 细胞疗法的研究表明,同时转移 CD4 + 和 CD8 + T 细胞比单独转移 CD8 + T 细胞可获得更好的治疗效果 2,5 ,因为 CD4 + T 细胞有助于维持 CD8 + T 细胞的效应功能并防止其衰竭。这些研究共同支持了免疫细胞类型(特别是 CD4 + 和 CD8 + T 细胞)之间协调相互作用的要求,以实现有效的抗肿瘤免疫。
摘要 背景 尽管免疫检查点抑制剂已成为临床肿瘤学的突破,但这些疗法未能在相当一部分患者中产生持久的反应。这种缺乏长期疗效的原因可能是预先存在的连接先天免疫和适应性免疫的网络较差。在这里,我们提出了一种基于反义寡核苷酸 (ASO) 的策略,该策略双重靶向 Toll 样受体 9 (TLR9) 和程序性细胞死亡配体 1 (PD-L1),旨在克服对抗 PD-L1 单克隆疗法的耐药性。方法 我们设计了一种高亲和力免疫调节 IM-TLR9:PD-L1-ASO 反义寡核苷酸(以下简称 IM-T9P1-ASO),靶向小鼠 PD-L1 信使 RNA 并激活 TLR9。然后,我们进行了体外和体内研究,以验证 IM-T9P1-ASO 在肿瘤和引流淋巴结中的活性、功效和生物学效应。我们还进行了活体成像,以研究 IM-T9P1-ASO 在肿瘤中的药代动力学。结果 IM-T9P1-ASO 疗法与 PD-L1 抗体疗法不同,可在多种小鼠癌症模型中产生持久的抗肿瘤反应。从机制上讲,IM-T9P1-ASO 激活了肿瘤相关树突状细胞 (DC) 的状态,本文称为 DC3,它们具有强大的抗肿瘤潜力但表达 PD-L1 检查点。IM-T9P1-ASO 有两个作用:它通过与 TLR9 结合触发 DC3 的扩增并下调 PD-L1,从而释放 DC3 的抗肿瘤功能。这种双重作用导致 T 细胞排斥肿瘤。 IM-T9P1-ASO 的抗肿瘤功效取决于 DC3 产生的抗肿瘤细胞因子白细胞介素 12 (IL-12) 和 DC 发育所需的转录因子 Batf3。结论通过同时靶向 TLR9 和 PD-L1,IM-T9P1-ASO 通过 DC 激活放大抗肿瘤反应,从而在小鼠中产生持续的治疗效果。通过强调小鼠和人类 DC 之间的差异和相似之处,本研究可用于为癌症患者制定类似的治疗策略。
补充图 2:HRT 与 FAP-CD40 和 PD1-IL2v 的组合通过增加 CD8 + T 细胞重塑肺免疫微环境,无论是在早期还是晚期时间点。a,用 CD8、PD-1 和 TOX 抗体进行免疫组织化学染色并运行复合分类器可视化后,肿瘤和健康肺区域中不同细胞亚群的代表性示例。比例尺,100 m。bc,早期和晚期时间点肺部总 CD8 + T 细胞计数(“早期”=第 17、24 天,“晚期”= SV2-OVA 肿瘤细胞接种后第 31、41、48 天)。Mann Whitney 检验用于将指示组进行比较的统计分析。每组 n = 8-9 ROI(跨越 1-3 个样本)。 df ,分别在 SV2-OVA 肿瘤细胞接种后第 17、24 和 31 天对肺、mLN 和脾脏中的所示免疫群体进行流式细胞术分析。使用 Mann Whitney 检验对所示组进行比较进行统计分析。每组 n = 5 只小鼠。
反向传播是培训神经网络的基础算法,也是深度学习成功的关键驱动力。然而,由于现有文献所强调的,由于三个方面的限制,其生物学上的合理性受到了挑战:体重对称性,对全球误差信号的依赖和训练的双相性质。尽管已经提出了各种替代学习方法来解决这些问题,但大多数要么无法满足同时发生的所有三个标准,要么无法降低结果。受到金字塔神经元动力学和可塑性的启发,我们提出了树突局部学习(DLL),这是一种旨在克服这些挑战的新型学习算法。广泛的经验实验表明,DLL满足生物合理性的所有三个标准,同时在满足这些要求的算法中实现最先进的性能。此外,DLL在包括MLP,CNN和RNN在内的一系列架构中表现出强烈的概括。这些结果是针对现有的生物学上合理学习算法的基准,为未来的研究提供了有价值的经验见解。我们希望这项研究能够激发用于培训多层网络的新生物学合理算法的发展,并在神经科学和机器学习方面发展进步。
资金信息抗癌联盟(标记为团队);国家研究机构(ANR)——白色项目; AMMICa US23/CNRS UMS3655;癌症研究协会(ARC);法兰西岛癌症中心;医学研究基金会(FRM);埃利尔; Equipex 癌表型筛查;欧洲罕见疾病联合计划(EJPRD);欧洲研究委员会高级研究员奖,资助/奖励编号:ICDCancer,101052444;欧盟地平线 2020 项目肿瘤生物组预评估,资助/奖励编号:101095604;欧盟地平线 2020 项目 Crimson,资助/奖励编号:101016923;国家癌症研究所(INCa);法国大学研究所; LabEx Immuno-Oncology,资助/奖励编号:ANR-18-IDEX-0001;马克基金会癌症研究 ASPIRE 奖; RHU 免疫生命; Seerave 基金会; SIRIC 癌症研究和个性化医疗 (CARPEM)
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年1月12日发布。 https://doi.org/10.1101/2024.04.04.588169 doi:Biorxiv Preprint
酪氨酸磷酸化是一种重要的翻译后修饰,可调节多细胞生物中许多生化信号网络的作品。迄今为止,在人类蛋白质中观察到了46,000种酪氨酸,但对大多数这些位点的功能和调节知之甚少。为了测试磷酸化的作用,主要挑战是产生重组磷酸蛋白。 mu-对酸性氨基酸的标记通常无法复制磷酸化的酪氨酸残基的大小和电荷,而合成氨基酸掺入的成本很高,产量相对较低。 在这里,我们展示了一种方法,灵感来自于如何通过二次焦油互动来发现细胞中的天然玫瑰氨酸激酶,从而增强了酪氨酸激酶的先天催化特异性,而无需过多。 我们设计了用于多种方法的多种方法,用于在大肠杆菌中产生高产量的磷酸蛋白产物。 在这里,我们测试磷酸化作为靶向相互作用(SH3-聚丙烯序列)的函数的函数,该磷酸化是跨不同特异性山脉激酶的不同反应方法。 该系统提出了一种廉价且可拖动的系统,用于产生磷蛋白和磷酸肽,我们演示了如何用于测试EGFR和PD-1靶标的抗体特异性。 这种方法是通过体外反应和共表达方法的灵活性来增强重组蛋白上的重组蛋白的共同作用的一种概括方法。 我们将其称为SISA-KIT,用于信号启发的合成增强激酶工具包。主要挑战是产生重组磷酸蛋白。mu-对酸性氨基酸的标记通常无法复制磷酸化的酪氨酸残基的大小和电荷,而合成氨基酸掺入的成本很高,产量相对较低。在这里,我们展示了一种方法,灵感来自于如何通过二次焦油互动来发现细胞中的天然玫瑰氨酸激酶,从而增强了酪氨酸激酶的先天催化特异性,而无需过多。我们设计了用于多种方法的多种方法,用于在大肠杆菌中产生高产量的磷酸蛋白产物。在这里,我们测试磷酸化作为靶向相互作用(SH3-聚丙烯序列)的函数的函数,该磷酸化是跨不同特异性山脉激酶的不同反应方法。该系统提出了一种廉价且可拖动的系统,用于产生磷蛋白和磷酸肽,我们演示了如何用于测试EGFR和PD-1靶标的抗体特异性。这种方法是通过体外反应和共表达方法的灵活性来增强重组蛋白上的重组蛋白的共同作用的一种概括方法。我们将其称为SISA-KIT,用于信号启发的合成增强激酶工具包。
本质上,大多数已知的对象只有在超分子自组装中,例如蛋白质复合物和细胞膜。在这里,出现了树突状聚合物,该聚合物只有在自组装成二维超分子聚合物(2D-Suprapol)时,才抑制具有不可逆(病毒)机制的严重急性呼吸综合征2(SARS-COV-2)。单体类似物只能可逆地抑制SARS-COV-2,从而使该病毒在稀释后恢复感染性。组装后,2D-苏普醇在体外表现出显着的半抑制浓度(IC 50 30 nm)和叙利亚仓鼠模型中的体内具有良好的效果。使用冷冻-TEM,可以证明2D-Suprapol具有可控的侧向尺寸,可以通过调整pH值并使用小角度X射线和中子散射来调整,以揭示超分子组件的结构。提出了这种功能性的2D-Suprapol及其超分子结构,作为预防性鼻喷雾剂,可抑制病毒与呼吸道的相互作用。
