PISA大学,民用与工业工程系 - 航空航天部,意大利PISA 56122 LILY.Blondel@ing.unipi.it; alberto.sarritzu@ing.unipi.it; Angelo.pasini@unipi.it B Politecnico di Milano,航空航天,科学技术部。(daer),20156年意大利米兰市inigo.alforja@polimi.it; michelle.lavagna@polimi.it c Technische Universität Braunschweig, Institute of Space Systems, 38106 Braunschweig, Germany l.ayala-fernande@tu-braunschweig.de D Université Libre de Bruxelles, Aero-Thermo-Mechanics Department, 1050 Bruxelles, Belgium riccardo.gelain@ulb.be; patrick.hendrick@ulb.be e Onera/dmpe,Toulouse大学,F-31410 Mauzac,法国Christopher.glaser.glaser@onera.fr; jerome.anthoine@onera.fr; jouke.hijlkema@onera.fr f TechnisscheUniversitätDresden,航空航天工程学院,01062德累斯顿,德国,livia.ordonjez-valles@hs-bremen.de; martin.tajmar@tu-dresden.de G Hochschule Bremen,28199 Bremen,德国Livia.ordonjez-valles@hs-bremen.de; uapel@fbm.hs-bremen.de H TechnischeUniversität柏林,太空技术主席,10587柏林,德国e.stoll@tu-berlin.de *通讯作者
> 近地轨道空间碎片防撞激光网络概念研究 > S. Scharring 等人 > 2021 年国际高功率激光烧蚀研讨会 > 2021 年 4 月 15 日 DLR.de • 图表 8
摘要:在人类剩下的时间很少,可以将气候变化降低到可容忍的水平,因此需要高度可扩展且可快速可部署的解决方案,任何国家都可以实施。国际水域中的海岸风能是一种未充分利用的资源,甚至可能由内陆国家来利用。在本文中,提出了在高海上自主运行的风力涡轮机以收获能量。风力涡轮机产生的电能被转换为可再生燃料并存放在船上。后来,燃料将被转移到岸或其他使用目的地。在系统级别上探索了所提出的想法,其中必要的基本子系统被确定和定义,例如能量转换和存储以及推进子系统。此外,还研究了各种操作可能性,包括不同的帆船策略和存储燃料的组合。现有的想法也被阐述了,也提出了一个示例概念。在本文中,提出的可再生能源转换系统将在更高的抽象水平进行探索。跟进这项概念研究,需要进行更详细的研究,以确定这种航行可再生能源转换系统的开发是否可以从工程,经济和环境的角度可行。
预测扩张的心肌病中重大心律失常事件(MAE)代表了一个未满足的临床目标。计算模型和人工智能(AI)是新的技术工具,可以在我们预测MAE的能力方面具有重大提高。在这项概念验证研究中,我们提出了一个基于深度学习(DL)的模型,我们称其为扩张心肌病(DARP-D)中的深度心律失常(DARP-D),该模型使用多种心脏磁共振数据(CINE和HYPERVIDEOS和HYPERVIDEOS和HYPERIMIMIAS和LGE图像和临床上的MA)(包括一个促进的MA),促进了促进的Maiatiations和临时性的MARIADES和临时性的促进,该模型(DARP-D)构建了。随着时间的流逝,心脏骤停,由于心室原纤维造成的,持续30 s的心室心动过速,或在<30 s的<30 s(适当的可植入的心脏除颤器干预)中导致血流动力学塌陷。该模型在154例扩张心肌病患者的样本中有70%的培训和验证,并在其余30%中进行了测试。DARP-D在Harrell的C一致性指数中达到95%CI,在测试集中达到0.12–0.68。我们证明了我们的DL方法是可行的,并且代表了扩张心肌病的心律失常预测领域的新颖性,能够分析心脏运动,组织特征和基线协变量,以预测一个个体的患者患者的大型心律失常事件的风险曲线。但是,患者,MAE和训练时期数量少,使该模型成为有希望的原型,但尚未准备好临床使用。需要进一步的研究来改进,稳定和验证DARP-D的性能,以将其从AI实验转换为每日使用的工具。
金星是太阳系中最神秘、最有趣的探索地点之一。然而,金星表面环境恶劣,岩石密布,温度、压力极高,化学腐蚀性极强。探测金星表面的行星探测车具有科学价值,但必须使用非常规方法代替传统的机器人控制和机动性。这项研究提出,张拉整体结构可以提供适应性和控制性,代替传统的机械装置和电子控制,用于金星表面和其他极端环境中的机动性。张拉整体结构重量轻且柔顺,由简单重复的刚性和柔性构件构成,仅通过张力稳定,灵感来自生物学和几何学,适合折叠、展开和适应地形。它们还可以利用智能材料和几何学的特性来实现规定的运动。根据科学探索的需要,简单的张拉整体探测车可以提供机动性和对地形和环境条件的稳健性,并可以由风等环境源提供动力。各种各样的张拉整体结构都是可能的,这里提出了一些适用于不稳定和复杂环境的初步概念。关键词:行星探测器,金星,张拉整体结构
比萨大学,土木与工业工程系 - 航空航天部,意大利比萨 56122 lily.blondel@ing.unipi.it; alberto.sarritzu@ing.unipi.it; angelo.pasini@unipi.it b 米兰理工大学,航空航天、科学与技术系。 (DAER),20156 米兰,意大利 inigo.alforja@polimi.it; michelle.lavagna@polimi.it c 布伦瑞克工业大学,空间系统研究所,38106 布伦瑞克,德国 l.ayala-fernandez@tu-braunschweig.de d 布鲁塞尔自由大学,航空热力学系,1050 Bruxelles,比利时 riccardo.gelain@ulb.be ; patrick.hendrick@ulb.be 和 ONERA/DMPE,图卢兹大学,F-31410 Mauzac,法国 christopher.glaser@onera.fr;杰罗姆·安索因@onera.fr; Jouke.Hijlkema@onera.fr f 德累斯顿工业大学,航空工程学院,01062 德累斯顿,德国 Livia.Ordonjez-Valles@hs-bremen.de; martin.tajmar@tu-dresden.de g 不来梅应用技术学院,28199 不来梅,德国 Livia.Ordonjez-Valles@hs-bremen.de ; uapel@fbm.hs-bremen.de h 柏林工业大学,空间技术系,10587 柏林,德国 e.stoll@tu-berlin.de * 通讯作者
最初的任务概念研究,以评估使用纳米卫星在近地空间中使用纳米卫星进行操作空间天气监测的可行性(延迟,寿命,可靠性)。
序言:《联合国生物多样性公约》的联合国执行秘书正在审查“合并研究”(决策14/20的研究3和4)。称该过程为“同行评审”是一个错误的名称,因为(a)已知合并研究的作者的身份,(b)将知道审稿人的身份,并且(c)无论审查如何,文本都将发表。披露身份并保证出版偏见评论并抑制参与。同样,格式指南偏见审查。可下载用于同行评审的模板对应于几乎“按原样”接受的手稿的复制编辑。可取的是当事方,其他政府和利益相关者的许多提交形式的格式,以审查莎拉·A·莱尔德(Sarah A._____________________________ *作者在研究生研讨会上关于自然资源经济学的讨论,2019年秋季学期,
1 - 简介 1 1.1 团队介绍 1 1.2 为何使用系统工程 1 2 - 系统工程 1 2.1 - 阶段 A 前:概念研究 1 2.1.1 任务概述 1 2.1.2 任务声明 1 2.1.3 利益相关者 2 2.1.4 设计理念 2 2.1.5 设计优化标准 2 2.1.6 系统要求 2 2.1.7 概念研究 3 2.1.8 设计更新和新元素 3 2.1.9 任务概念评审 (MCR) 3 2.2 - 阶段 A:概念开发 3 2.2.1 系统层次结构 3 2.2.2 作战概念 3 2.2.3 系统要求和定义评审 (SRR 和 SDR) 4 2.2.3.1 系统定义评审 (SDR) 4 2.2.3.2 系统要求评审 (SRR) 4 2.3 - 阶段 B:初步设计 4 2.3.1 电气 4 2.3.2 机械 5 2.3.2.1 移动性 5 2.3.2.2 框架 5 2.3.2.3 挖掘 5 2.3.2.4 收集 6 2.3.3 软件与自主性 6 2.3.4.1 自主性 6 2.3.4.2 控制 6 2.3.4.3 控制中心 7 2.3.5 初步设计审查 (PDR) 7 2.4 - 阶段 C:最终设计和制造 7 2.4.1 电气 7 2.4.2 机械 8 2.4.2.1 移动性和框架 8 2.4.2.2 挖掘机 8 2.4.2.3 收集 8 2.4.3 软件与自主性 9 2.4.3.1 自主性9 2.4.3.2 控件 10 2.4.3.3 控制中心 10 2.4.4 接口 11 2.4.4.1 电气 11 2.4.4.2 机械 11 2.4.4.3 软件 11 2.4.5 关键设计评审 (CDR) 12 2.4.6 制造 12 2.5 - 阶段 D:系统组装、集成、测试 12 2.5.1 组装和集成 12 2.5.1.1 电气 12 2.5.1.2 机械 12 2.5.1.3 软件 12 2.5.2 测试 13 2.5.2.1 电气 13