模块 1 由 5 个单元组成 模块 2 由 4 个单元组成 模块 3 由 5 个单元组成 模块 4 由 4 个单元组成 在讨论放大器的模块 1 中,单元 1 将向您介绍放大器的分类,而单元 2 则讲解晶体管的等效电路。单元 3 讨论混合等效模型,而单元 4 讨论工作点。 最后,在模块 1 中,单元 5 详细阐述了偏置稳定性的概念和实际应用 在讨论振荡器的模块 2 中,单元 1 涵盖负反馈,而单元 2 讨论正反馈。单元 3 讲解 LC 振荡器的原理和功能,而单元 4 介绍 RC 振荡器。 在讨论电源的模块 3 中,单元 1 将带您了解电源。单元 2 详细介绍了直流电源单元的主题,而单元 3 讲解了整流器的性能。第 4 单元和第 5 单元分别专门讨论滤波电路和输出电压调节。在模块 4 中,单元 1 专门讨论运算放大器(通常称为 Op-Amp)。单元 2 向您展示了运算放大器的众多应用中的几个,而单元 3 则努力通过放大器主题解释放大背后的概念——这是以一种简单易懂的方式完成的。本课程以模块 4 的第 4 单元结束,主题是电压调节器。课程目标和目的 PHY 308 的目的是让您进一步熟悉放大器、振荡器、电源和线性集成电路——它们的参数、特性和物理限制。进一步让您熟悉数学
TNBC患者的大多数临床死亡都是由于化学抗性和侵略性转移造成的,非洲年轻妇女的患病率很高。虽然肿瘤驱动器众多并且变化了,但转移过渡的驱动因素在很大程度上尚不清楚。在这里,我们发现了TNBC肿瘤在TRIM37网络上的分子依赖性,该网络使肿瘤细胞能够抵抗化学治疗和转移性应激。TRIM37指导的组蛋白H2A单泛素化强化DNA修复的变化,从而使TP53突变的TNBC细胞具有抗化疗的抗性。化学治疗药物通过ATM/E2F1/STAT信号触发了正反馈回路,从而在化学抗性癌细胞中扩增了TRIM37网络。TRIM37的高表达诱导转移性表型的转录组变化特征,并且对TRIM37的抑制显着降低了TNBC细胞的体内倾向。选择性递送TIM37特异性反义寡核苷酸,使用抗叶酸受体1-结合的纳米颗粒与化学疗法结合使用,在自发转移性鼠模型中抑制了肺转移。总的来说,这些发现将TRIM37建立为临床相关的目标,并提供了治疗干预的机会。
摘要 许多发育过程依赖于基因表达的精确时间控制。我们之前已经建立了一个理论框架,用于控制如此高的时间精度的调控策略,但这些预测仍然缺乏实验验证。在这里,我们使用控制秀丽隐杆线虫神经母细胞迁移的 Wnt 受体的时间依赖性表达作为可处理系统,在体内研究强大的细胞内在计时机制。单分子 mRNA 定量显示受体的表达呈非线性增加,预计这种动态会提高计时精度,而不受控制的计时丰度呈线性增加。我们表明这种上调依赖于转录激活,为受体表达时间受累积激活剂调控的模型提供了体内证据,当达到特定阈值时,该激活剂会触发表达。这种计时机制在神经母细胞谱系中发生的细胞分裂中起作用,并受分裂不对称的影响。最后,我们表明通过经典 Wnt 通路对受体表达的正反馈可提高时间精度。我们得出结论,通过结合时间守护基因的调节和反馈,可以实现强大的细胞内在计时。
摘要 本研究研究了单晶碲化镉半导体与气体放电等离子体接触时的物理特性。结果表明,等离子体中的载流子与入射红外辐射一起有助于增强气体放电室中的光电流。在气体放电室中电压足够高(超过 2.5 kV)时,可以观察到与等离子体对半导体表面的影响相关的正反馈。理论计算结果和实验经验的结果非常吻合,由此确定了比例系数的物理意义,同时考虑了等离子体对光电探测器光电导的影响。双等离子体接触的使用有助于抑制气体放电室中光电流的空间不稳定性,从而允许在器件输入端使用低电阻光电探测器。首次在单晶碲化镉的基础上在室温下获得了类似的结果。关键词:气体放电电池、碲镉、气体放电等离子体、光电导率、光电滞后、红外摄影。 PACS 编号:95.85.Bh、72.20.-i 收到: 修订: 接受: 发布:2024 年 9 月 16 日 2024 年 10 月 18 日 2024 年 10 月 22 日 2024 年 12 月 26 日 1. 简介
自噬是一种分解代谢过程,在整个进化过程中一直被保留,用于降解和回收细胞成分和受损细胞器。自噬在各种应激条件下被激活,例如营养缺乏、病毒感染和基因毒性应激,并与其他应激反应途径协同作用,以减轻氧化损伤并维持细胞稳态。其中一种途径是 Nrf2-Keap1-ARE 信号轴,它作为一种内在的抗氧化防御机制,与癌症化学预防、肿瘤进展和耐药性有关。最近的研究发现了自噬受损(由自噬受体蛋白 p62 介导)与 Nrf2 通路激活之间的联系。具体而言,p62 通过选择性自噬促进 Keap1 降解,导致 Nrf2 易位到细胞核中,在那里它转录激活下游抗氧化酶表达,从而保护细胞免受氧化应激。此外,Nrf2 还调控 p62 的转录,从而建立起 p62、Keap1 和 Nrf2 之间的正反馈回路,增强对细胞的保护作用。本文旨在全面综述 Nrf2 和自噬在癌症进展中的作用、Nrf2 通路与自噬之间的调控相互作用以及 Nrf2-自噬信号轴在癌症治疗中的潜在应用。
摘要:色氨酸 - 京难是途径(TRP – KYN)是大脑和外围色氨酸浓度的主要途径。kynurenines表现出广泛的生物学作用(通常是对比的),例如细胞毒性/细胞保护剂,氧化剂/抗氧化剂或促抗/抗炎性敏感性。净效应取决于它们的局部浓度,细胞环境以及复杂的正反馈回路。有益的和有害的雌元之间的不平衡与包括糖尿病(糖尿病)(DM)在内的各种神经退行性疾病,精神病和代谢性疾病的发病机理有关。尽管有可用的疗法,但DM可能导致严重的宏观和微血管并发症,包括心脏和脑疾病,外周血管疾病,慢性肾脏疾病,糖尿病性视网膜病,自主神经病或认知障碍。众所周知,通常与DM相吻合的低度炎症会影响KP的功能,相反,Kynurenines可以调节免疫反应。本综述提供了基于可用动物,人类和微生物组研究的DM中TRP – KYN途径状态的详细摘要。我们强调了在DM和胰岛素耐药性的发育中,TRP转化为trp的(功能和定性上)转化为Kynurenines的分子相互作用的重要性。TRP – KYN途径是在寻找DM中寻找预防和治疗干预措施的新目标。
Ras/PI3K/ERK 信号网络在包括宫颈癌和胰腺癌在内的各种人类癌症中经常发生突变。先前的研究表明,Ras/PI3K/ERK 信号网络表现出可兴奋系统的特征,包括活动波的传播、全或无反应和不应性。致癌突变导致网络兴奋性增强。Ras、PI3K、细胞骨架和 FAK 之间的正反馈回路被确定为兴奋性的驱动因素。在这项研究中,我们研究了通过抑制宫颈癌和胰腺癌细胞中的 FAK 和 PI3K 来靶向信号兴奋性的有效性。我们发现 FAK 和 PI3K 抑制剂的组合通过增加细胞凋亡和减少有丝分裂协同抑制了特定宫颈癌和胰腺癌细胞系的生长。特别是,FAK 抑制导致宫颈癌但不会导致胰腺癌细胞中 PI3K 和 ERK 信号下调。有趣的是,PI3K 抑制剂激活了多种受体酪氨酸激酶 (RTK),包括宫颈癌细胞中的胰岛素受体和 IGF-1R,以及胰腺癌细胞中的 EGFR、Her2、Her3、Axl 和 EphA2。我们的研究结果强调了 FAK 和 PI3K 抑制剂联合治疗宫颈癌和胰腺癌的潜力,尽管需要适当的药物敏感性生物标记物,并且可能需要同时针对耐药细胞进行 RTK 靶向治疗。
摘要:线粒体在调节宿主代谢、免疫和细胞稳态方面发挥着关键作用。值得注意的是,这些细胞器被认为是从 α-变形菌与原始真核宿主细胞或古菌之间的内共生关系进化而来的。这一关键事件决定了人类细胞线粒体与细菌具有一些共同特征,即心磷脂、N-甲酰肽、mtDNA 和转录因子 A,它们可以作为线粒体衍生的损伤相关分子模式 (DAMP)。细胞外细菌对宿主的影响主要通过调节线粒体活动起作用,而且线粒体本身通常就是免疫原性细胞器,可以通过 DAMP 动员触发保护机制。在这项研究中,我们证明暴露于环境中的 α-变形菌的中脑神经元通过 Toll 样受体 4 和 Nod 样受体 3 激活先天免疫。此外,我们还表明中脑神经元会增加与线粒体相互作用的 α-突触核蛋白的表达和聚集,从而导致其功能障碍。线粒体的动态变化也会影响线粒体自噬,这有利于先天免疫信号的正反馈回路。我们的研究结果有助于阐明细菌和神经元线粒体如何相互作用并引发神经元损伤和神经炎症,并使我们能够讨论细菌衍生的病原体相关分子模式 (PAMP) 在帕金森病病因中的作用。
Zip13的丧失导致Ehlers-Danlos综合征脊柱发育异常3型,涉及结缔组织发育不良,与肌肉强度降低相关。然而,Zip13在骨骼肌稳态中的作用,特别是在调节肌肉卫星细胞(MUSC)的情况下,仍然了解不足。在这项研究中,我们研究了Zip13-Knockout(KO)小鼠,发现Zip13-KO小鼠的MUSC降低,其中静止和激活的相位平衡被中断。为了阐明MUSC中Zip13表达的生理作用和动力学,我们生成了编码Zip13基因座GFP的Zip13-GFP敲入(KI)小鼠,这表明ZIP13有助于Quiescent和激活MUSC及其功能的相位平衡调节。的确,Zip13-KO小鼠从骨骼肌损伤中表现出延迟恢复,表明Zip13需要适当的骨骼肌再生。此外,在纯合Zip13-GFP Ki小鼠的MUSC中,GFP表达降低,其完整的Zip13表达受到干扰,这表明存在正反馈机制以维持Zip13表达。总的来说,我们的结果表明,Zip13可能通过自动调节Zip13表达来控制MUSC的静止/激活相平衡,从而积极参与骨骼肌肉再生,而新生成的Zip13-GFP Ki小鼠将有助于研究Zip13-3-3-GFP Ki小鼠的Zip13-3-3-3-3-3-epressects expecters表达细胞。
单元 1:放大器 16 小时 多级放大器:多级放大器的需求和使用、总增益、级联与共源共栅。RC 耦合放大器。达林顿放大器 - 电路、电流增益、Zi、Zo、优点。功率放大器:电压与功率放大器、功率放大器的需求、分类 A 类、C 类(仅提及)B 类:推挽放大器、工作、效率(推导)、交叉失真、谐波失真、互补对称(无变压器)。比较。调谐放大器:需要单调谐和双调谐、工作、频率响应曲线、优点和缺点、耦合说明。JFET - 类型 - p 沟道和 n 沟道、工作和 IV 特性 - n 沟道 JFET、参数及其关系、BJT 和 JFET 的比较。共源放大器、MOSFET:E&D、MOSFET – n 沟道和 p 沟道、构造、工作、符号、偏置、漏极和传输特性、CMOS 逻辑、CMOS 反相器 - 电路、工作和特性。单元 2:反馈放大器和振荡器 10 小时反馈:反馈类型正反馈和负反馈、框图、反馈对 Av、BW、Zi 和 Zo 的影响(仅适用于电压串联反馈放大器电路)。振荡器的需求;正反馈、储能电路 – 振荡、谐振频率。巴克豪森振荡准则、LC 调谐振荡器 - Colpitts 和 Hartley 振荡器、振荡频率(无推导)、最小增益、优点和缺点、RC 振荡器 - 相移和 Wein 桥振荡器(无推导)、频率和最小增益、晶体振荡器、压电效应、等效电路、串联和并联谐振电路、Q 因子。非正弦振荡器:非稳态多谐振荡器,工作波形,频率公式(仅提及),单稳态多谐振荡器,双稳态多谐振荡器(触发器概念)。 单元 3:集成电路 04 小时 IC555 框图和引脚图。 IC555 应用 - 非稳态(推导)和单稳态多谐振荡器,压控振荡器。 施密特触发器。 IC 稳压器:LM317,IC78XX,79XX 系列(框图) 单元 4:运算放大器(Op-Amp) - 理论与应用 11 小时 Op-Amp 框图,引脚图 IC741,规格,理想和实际运算放大器参数的特性 - 输入偏置电流,输入失调电压,输出失调电压,CMRR,斜率 SVRR,失调零,开环运算放大器限制,闭环运算放大器。负串联反馈放大器的框图,反相和非反相反馈电路,增益,R if ,R of 。虚拟接地,单位增益带宽积。应用:加法器 - 反相和非反相,减法器,比例变换器,缓冲器,积分器,微分器(理想和实用)。比较器,过零检测器,有源滤波器 - 巴特沃斯一阶低通、高通、带通、带阻、全通滤波器。二阶滤波器(仅提及)。自学:04 小时 IC 制造技术。推荐教科书 1、运算放大器和线性电路,Ramakanth Gayakwad PHI,第 5 版,2015 年。2. 应用电子学教科书,RS Sedha