本文介绍了 DLR 目前为支持空中加油自动化研究活动而开展的建模和仿真活动。在空中加油机动过程中,加油机和受油机需要飞得很近,这会导致它们之间产生非常显著的气动相互作用。两架飞机也会影响探头和锥套的运动,这也需要进行建模。本文概述了开发的模型和仿真基础设施、它们的主要功能以及生成支持此建模的数据所需的工作。与许多其他具有类似建模需求的工作不同,RANS CFD 计算比更简单的技术更适合用于对加油机、接收器、软管和锥套之间的气动相互作用进行建模。实时动态模型基于两个完整的飞机动态模型。一整套模拟程序(包括现代客机飞行控制系统的所有复杂性)用于每架飞机。耦合的模拟程序部署在 DLR AVES 模拟器中。为此,需要对 AVES 核心程序及其配置进行许多修改,以将其扩展为能够模拟两架飞机的编队:文中从功能的角度提到了其中一些修改,但没有过多地深入 AVES 特定的实施细节。
联合攻击战斗机重组在 2011 年和 2012 年持续进行,增加了成本和进度。新的项目基准预计总采购成本为 3957 亿美元,比 2007 年的基准增加 1172 亿美元(42%)。目前计划在 2019 年实现全速生产,比 2007 年的基准推迟了 6 年。自 2001 年开始开发以来,每架飞机的单位成本已经翻了一番。由于项目的不确定性,交付作战人员需求的关键日期仍未确定。虽然国防部计划购买的飞机总数没有变化,但它已经连续 3 年减少了近期采购数量,将飞机和成本推迟到未来几年。自 2002 年以来,截至 2017 年的总数已减少了四分之三,从 1,591 架减少到 365 架。可负担性是一个关键挑战——到 2037 年,每年的采购资金需求平均约为 125 亿美元,生命周期运营和支持成本估计为 1.1 万亿美元。国防部尚未彻底分析如果资金预期未得到满足,对项目的影响。
摘要。雷达无疑是战场上最重要的传感器,可用于对飞行器进行预警和跟踪。采用 AESA 火控雷达的现代战斗机能够捕获和跟踪远距离目标,距离可达 50 海里或更远。然而,低可观测或隐形技术的普及对雷达能力提出了挑战,将其探测/跟踪范围缩小了大约三分之一。战斗机雷达的这种退化更为严重,因为大多数隐形威胁都针对更高的频段进行了优化,例如火控雷达的情况。因此,电磁频谱的其他部分已被重新考虑,例如红外辐射 (IR)。由于燃料燃烧、空气动力摩擦和红外反射,每架飞机都是红外源。这样,喷气式战斗机就可以在寒冷的天空背景下被红外传感器探测到。因此,IRST 系统重新出现,为雷达提供了替代方案。除了目标探测能力(无论是否隐身)之外,IRST 系统还具有被动操作、抗干扰能力和更好的角度精度。另一方面,它们容易受到天气条件的影响,尤其是潮湿,同时它们不能像雷达那样直接测量距离。本文探讨和比较了 AESA 雷达和 IRST 系统这两种方法的能力和局限性,也对传感器融合的优势提供了一些见解。
简介 恭喜您购买新的 BRS-6™ 应急降落伞系统,我们认为这是同类产品中质量最高、最具创新性的产品。BRS 拥有最成功、最受欢迎的系统,全球销量超过 31,000 台,挽救了 260 多人的生命。BRS 应急降落伞系统利用手动启动的固体推进剂火箭发动机在危及生命的紧急情况下拉出圆形、不可操纵的降落伞并回收飞机。在足够的高度,它旨在以可存活的下降速度将飞机降落到地面。当前的产品是 BRS 在设计、测试、制造和维修飞机弹道部署降落伞方面近 30 年经验的成果。功能和结构可靠性是其成功开发的关键。BRS 已为 350 多种不同类型的超轻型、LSA、实验飞机和军用无人驾驶航天飞行器 (UAV) 销售了装置。此外,目前每架 Cirrus Design SR-20 和 SR-22 飞机以及部分 Cessna 型号(C150、C172 和 C182)都安装了经 FAA 认证的系统作为售后 STC 产品。使用成熟的降落伞和火箭发动机技术是这一努力的关键因素。BRS 固体推进剂火箭发动机、降落伞和相关部件中使用的材料、组件、设计方法和生产方法均改编自军用
John O’Callaghan,NTSB 摘要 模拟是 NTSB 用于了解事故期间控制飞机运动的物理原理的工具之一。如今,NTSB 的工程桌面模拟程序基于 MATLAB,并包括一个“数学飞行员”,可以计算一组飞行控制和油门输入,以匹配给定的飞行轨迹(例如,由记录的雷达或 GNSS 数据确定)。描述飞机的数学模型必须从制造商处获得或以其他方式估算。此工具已用于重现和分析最近几起通用航空事故的记录飞行路径。但是,NTSB 也会在适当的情况下使用其他类型的模拟。本文将讨论美国国家运输安全委员会使用的三个不同级别的模拟:1) 全飞行飞行员训练模拟器,2) 没有飞行员界面的桌面工程模拟,以及 3) 用作事故数据“媒体播放器”的模拟器视觉效果和驾驶舱。这些不同层次将通过以下案例研究进一步说明:2009 年“哈德逊奇迹”在哈德逊河上迫降事件(US1549)、2001 年美国航空 587 号航班在纽约发生的事故(AA587)、2017 年皮拉图斯 PC-12 空间定向障碍事故以及 2015 年 F-16 战斗机与赛斯纳 150 空中相撞。在这些事件的调查中使用了以下模拟器:● 使用空客 A320 全飞行工程模拟器评估 US1549 飞行员可用的着陆选项,该航班在两台发动机因鸟击而失去推力后在哈德逊河迫降。此外,模拟器还用于评估实现规定的迫降着陆标准的操作可行性。● 将空客 A300 全飞行模拟器所基于的数学空气动力学和推进模型整合到桌面工程模拟器(无飞行员界面)中,以分析 AAL587 飞行数据记录器上记录的飞机运动。这项分析用于确定飞行员飞行控制输入和外部大气扰动(由尾流穿透引起)对飞机运动和载荷的相对重要性。此外,NASA Ames“垂直运动模拟器”(VMS)用于重现 AA587 场景,复制事件期间的视觉场景、驾驶舱控制运动、仪表显示、载荷系数(在限制范围内)和声音(包括驾驶舱语音记录器音频)。VMS 的这种“反向驱动”使调查人员能够评估飞机加速度可能如何影响副驾驶对方向舵踏板和其他飞行控制装置的反应。● 在桌面工程模拟器中使用 Pilatus PC-12 的仿真模型来计算一组飞行控制和油门输入,从而匹配记录的雷达数据。● 最后,对于空中相撞的情况,使用 Microsoft Flight Simulator X 描绘每架飞机驾驶舱的视觉场景,包括从每位飞行员的角度看到的冲突飞机的外观。该动画使调查人员能够确定每架飞机在碰撞前几分钟的可见性,并有助于说明“看见并避免”碰撞避免概念的局限性,以及驾驶舱显示交通信息的好处。
摘要 本文详细介绍了为确定下一代战斗机对高速数据总线的需求而进行的研究,对各种高速数据总线技术进行了比较,并对光纤通道航空电子环境 (FC-AE) 数据总线协议的选择进行了说明。基于这项研究,提出了采用 FC-AE 网络的航空电子架构以满足下一代战斗机的要求。这项研究的必要性在于当前基于 MIL STD 1553B 进行数据通信的联合航空电子架构和基于 STANAG 3350 的模拟视频分发网络的缺点。MIL STD -1553B 的最大速度限制为 1 Mbit/秒,STANAG 3350 的最大视频分辨率为 760 x 575 像素。当前的航空电子架构使用多种协议来实现数据、视频和控制功能。可以使用单个冗余商用现货网络来代替使用多种网络协议,这可以节省空间、成本和重量,同时增加网络容量。重量对于航空电子设备来说尤其重要,每架战斗机容纳其航空电子设备和互连系统的空间都有限。在下一代战斗机中,新功能需求的数量有所增加,需要在重量预算约束内实现。建议的解决方案是基于 FC-AE 网络的先进集成航空电子设备和统一互连系统。
印度政府民航技术中心局长办公室,萨法达让机场 OPP,新德里民航要求第 2 节 - 适航系列“I”第六部分第 I 期,1996 年 12 月 12 日生效:即日起主题:驾驶舱语音记录器 1.目的:1937 年航空规则第 57 条要求每架飞机都应安装并配备仪器和设备,包括无线电设备和特殊设备,如根据飞行的用途和情况而指定。民航要求的这一部分规定了在印度注册的飞机以及租赁和进口到该国的飞机上安装驾驶舱语音记录器 (CVR) 的要求。本 CAR 是根据 1937 年航空规则第 133A 条的规定签发的。 2. 定义: 驾驶舱语音记录器(CVR):安装在飞机上,用于记录飞行期间驾驶舱的听觉环境,以防止和调查事故/事件的设备。 3. 适用性要求: 3.1 飞机 — 商业航空运输 3.1.1 驾驶舱语音记录器 — 在 1987 年 1 月 1 日或之后首次颁发单独适航证的飞机 3.1.1.1 最大审定起飞质量超过 5700 千克的所有飞机均须配备 CVR,其目的是记录飞行期间驾驶舱的听觉环境。
下面显示的每飞行小时成本(千美元)比较仅反映了 F - 35 常规起飞和着陆 (CTOL) 型号。CTOL 型号将占国防部购买的 F - 35 飞机的大部分,即总数量 2,443 架中的 1,763 架。F - 35 CTOL 和 F - 16 之间的 O&S 差异代表了传统机队之间的比较。由于 F - 16 未报告某些成本要素(例如,支持设备更换、修改和间接成本),因此这些要素被排除在下面的 F - 35A 每飞行小时成本估算之外,以更好地与先前的计划保持一致。下面的 F - 35A 估算确实包括支持培训中心、作战地点的培训设备和自主物流信息系统 (ALIS) 的成本;遗留项目不包括这些成本类别。F - 35 CTOL 成本反映了 24 个飞机中队,每架飞机每年飞行 300 小时。F - 16 成本是与 F - 35 项目办公室和空军成本分析局共同制定的。下面显示的总 O&S 成本(百万美元)反映了所有三种美国变体的总 O&S 成本(包括所有类别),基于估计的 8,000 小时使用寿命和预测的损耗和使用率,并且不是上表所示 CTOL 成本的简单推断。先前系统的可比数字不可用。
摘要 — 我们考虑一个依赖于在欺骗者存在的情况下运行的飞机的航空自组织网络。如果合法飞机发送信号并且没有欺骗攻击,则地面基站接收到的聚合信号被视为“干净”或“正常”。相反,面对欺骗信号,接收信号被视为“虚假”或“异常”。自动编码器 (AE) 经过训练以从训练数据集中学习特征/特性,该训练数据集仅包含与没有欺骗攻击相关的正常样本。AE 将原始样本作为其输入样本并在其输出中重建它们。基于训练后的 AE,我们定义了欺骗发现算法的检测阈值。更具体地说,将 AE 的输出与其输入进行对比,将为我们提供曲线峰值方面的几何波形相似性/不相似性的度量。为了量化未知测试样本与给定训练样本(包括正常样本)之间的相似性,我们首先提出一种所谓的基于偏差的算法。此外,我们估计每架合法飞机的到达角(AoA),并提出一种所谓的基于 AoA 的算法。然后,基于这两种算法的复杂融合,我们形成了最终的检测算法,用于在严格的测试条件下区分虚假异常样本和正常样本。总之,我们的数值结果表明,只要仔细选择检测阈值,AE 就可以改善正确的欺骗检测率和误报率之间的权衡。
自 2017 年以来,德国航空航天中心 (DLR) 一直在组织一年一度的概念飞机设计学生竞赛,名为 DLR 设计挑战赛。这项教育和培训计划旨在挑战下一代飞机设计师,其主题针对航空领域的当前研究问题。今年的挑战是关于开发空中消防系统,包括车辆和机队设计,重点强调操作驱动的设计方面。本文提出了一种下一代垂直起降消防飞机的设计,预计将于 2030 年投入使用,该飞机以四架为一组智能工作和互连。该设计赢得了 DLR 设计挑战赛 2022,基础工作涵盖初步设计,包括结构概念、空气动力学模拟、重量和平衡计算以及进水和部署概念。设计的飞机具有相当高的有效载荷比,具有垂直起飞和降落能力,同时具有高效的水平飞行性能和极具竞争力的成本基础。使用各种传感器和现代玻璃驾驶舱,结合飞行员的舒适性和不可或缺的安全因素,确保在各种天气条件和具有挑战性的火灾场景下 24 小时可操作性。由于其模块化设计,每架飞机都可以在消防淡季舒适地转换为客运或货运版本,或在任务期间提供货物和机组人员。