Aditi Verma,Reddy Peera Kommaddi,Barathan Gnanabharathi,Etienne Hirsch,Vijayalakshmi Ravindranath。在帕金森氏病中,对多巴胺能神经元的发育和分化至关重要的基因被下调。神经传播杂志,2023,130(4),pp.495-512。10.1007/S00702-023-02604-X。Inserm-04002894
帕金森氏病是一种影响个人运动的中枢神经系统疾病。已经观察到帕金森氏病的患者患有手写异常,弯腰姿势,语音或语音疾病等。这项工作旨在实施能够从早期症状中预测PD的通用机器学习模型。在这项研究中,对UCI机器学习存储库和螺旋的语音数据集进行了试验,以研究组合模型的准确性。为了提高预测的准确性,从语音数据集中提取的功能是抖动,Shimmer,NHR,DFA和PPE。此外,从手写数据集提取的功能是压力,握把角,时间戳,径向速度,速度等。在上述数据集中对CNN,LSTM,Resnet等不同的机器学习模型进行了实验。从研究中可以看出,与此工作中使用的其他模型相比,具有适当的超级参数调整的CNN/LSTM模型效果很好。语音数据集上CNN/LSTM的准确性为88%,手工编写数据集为92%。。
血管危险因素(例如高血糖和血小板过度激活)在2型糖尿病(T2D)中起着重要作用,这是AD的危险因素。我们研究了105名认知未损害的成年人(包括21个淀粉样蛋白的成年人(Aβ -NEG对照组),包括21名淀粉样蛋白的老年人(Aβ -NEG对照组),以及45个淀粉样蛋白稳态的患者A A A A A AA APAiria Impair Impair或Dimpimair Impair或Dimpimair Impair(包括21例),我们研究了105名认知未损害的成年人的血小板水平,血小板计数;平均血小板体积(MPV)和AD神经成像标记之间的关系。我们评估了两个与T2D相关的血管危险因素的组间差异,然后对血液参数与多模式神经影像学(结构MRI,18 F-氟脱氧葡萄糖和18 F-氟-pet)之间的关联在Cogni-Inty-Unical Imperigancy Undimprimpightimpiraightimpightim Imprighightimpiraightimpigh的成年患者中使用了β-POPSOS,并使用了β-pospos。与β -neg对照组相比,β -POS患者的血小板计数较低和MPV较高。在认知无影响的成年人中,血糖水平升高与广告敏感区域的萎缩和低代谢有关。在β -Pos paptent中,MPV增加与内嗅和周围皮层萎缩有关。健康个体的亚临床但高血糖水平和AD患者的MPV水平与广告敏感大脑区域的神经变性有关,而与淀粉样蛋白沉积无关。©2022作者。由Elsevier Inc.出版这是CC BY-NC-ND许可(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章
。cc-by-nc-nd 4.0国际许可证可永久提供。是作者/资助者,他已授予Medrxiv的许可证,以显示预印本(未通过PEER REVIVE的认证)Preprint Preprint the版权所有此版本,该版本于2025年2月14日发布。 https://doi.org/10.1101/2025.02.11.25322052 doi:medrxiv preprint
此预印本版的版权持有人于2025年2月12日发布。 https://doi.org/10.1101/2025.02.09.25321969 doi:medrxiv preprint
抽象目标阿尔茨海默氏病(AD)对65岁及65岁以上的个体是最普遍的痴呆形式构成了重大挑战。尽管现有的AD风险预测工具表现出很高的准确性,但它们的复杂性和有限的可访问性限制了实际应用。本研究旨在使用机器学习技术开发一个方便,有效的预测模型。设计和设置我们对来自国家阿尔茨海默氏症协调中心的60岁及60岁以上的参与者进行了横断面研究。我们选择个人特征,临床数据和心理社会因素作为AD的基线预测因子(2015年3月至2021年12月)。这项研究利用随机森林和极端梯度提升(XGBoost)算法以及传统的逻辑回归进行建模。应用了一种超采样方法来平衡数据集。干预措施本研究没有干预措施。参与者研究包括2379名参与者,其中507名被诊断出患有AD。主要和次要结果指标,包括准确性,精度,召回,F1分数等。结果11变量在训练阶段至关重要,包括教育水平,抑郁,失眠,年龄,体重指数(BMI),药物计数,性别,支架,收缩压(SBP),神经症和快速眼动运动。XGBoost模型与其他模型相比表现出色,在曲线下达到0.915,灵敏度为76.2%,特异性为92.9%。最有影响力的预测因素是教育水平,总药物计数,年龄,SBP和BMI。结论拟议的分类器可以帮助指导老年人群中AD的临床前筛查。
与没有这种病变的那些相比,缺血性中风后的预后(3),并且它们经历了更大程度的认知障碍(4)。WML可能是由脑小血管疾病引起的,脑白质血液流量减少(5)。目前,WML的原因通常归因于慢性小血管疾病。一些研究发现,脑灌注减少可能会导致双侧缺血和缺氧,从而导致微循环疾病并恶化神经变性(6)。次要皮质损伤会发生,因为白质纤维之间的连接受损(7)。然而,除了包括年龄和高血压在内的危险因素外,视网膜微血管异常的严重程度与lacunar梗死的发生和发展有关(8)和WMLS(9)(如多项研究中)。减少了视网膜微动菌和微化的数量,以及视网膜内层内层厚度的减小,与认知能力受损,灰色和白色质量较低以及损害的白质网络结构显着相关(10)。
摘要阿尔茨海默氏病(AD)影响了全球超过5500万人,但关键的遗传贡献者仍然没有尚未确定。利用基因组元素模型的最新进展,我们提出了创新的反向基因发现技术,这是一种神经网络结构中一种突破性的神经元到基因的回溯方法,以阐明新型的因果关系遗传生物标志物推动了AD套装。逆向基因 - 包括三个关键创新。首先,我们利用这样的观察结果,即引起AD的概率最高的基因(定义为最有因果基因(MCG))必须具有激活那些引起AD的最高可能性的神经元的最高可能性,该神经元被引起AD的可能性最高,被罚款为最大的神经元(MCNS)。其次,我们在输入层处取代基因令牌表示,以允许每个基因(已知或新颖的AD)表示为输入空间中的疾病和独特的实体。最后,与现有的神经网络体系结构相反,该架构以馈送方式跟踪从输入层到输出层的神经激活,我们开发了一种创新的回溯方法,可以跟踪从MCNS到输入层的向后进行识别,从而识别最引起的代币(MCTS)和Corre-McGs。逆向基因 - 高度解释性,可推广和适应性,为在其他疾病情景中应用提供了有希望的方法。
摘要。阿尔茨海默氏病(AD)缺乏有效的治疗方法,通常在发生实质性病理变化后发现干预措施具有挑战性。早期发现和对危险因素及其下游影响的理解至关重要。动物模型提供了研究这些前驱阶段的宝贵工具。我们使用表达三个主要人类APOE等位基因的小鼠来投资各种遗传风险,代替了小鼠APOE。我们利用这些小鼠模型利用高分辨率磁共振扩散成像,因为它提供了可以共同分析的多个参数的能力。我们研究了APOE基因型如何与年龄,性别,饮食和免疫力相关,以产生区域脑体积和分数各向异性的共同变化,这是对脑水扩散的敏感度量。我们的结果表明,基因型强烈影响尾状壳,PON,扣带回皮层和小脑,而性别影响双侧杏仁核和梨状皮层。免疫状态会影响许多区域,包括顶叶皮层,丘脑,听觉皮层,V1和双侧齿状小脑核。危险因素相互作用特别影响杏仁核,丘脑和PON。apoE2小鼠在常规饮食上表现出最少的时间变化,表明弹性,而ApoE3小鼠对高脂饮食(HFD)的影响最小。HFD扩增了多个大脑区域的衰老效应。包括饮食在内的AD危险因素的相互作用显示出灰灰色,PON,PONS,AMYGDALA,下丘,M1和腹侧轨道皮层的显着变化。未来的研究应研究这些协调的体积和纹理变化基础的机械性,可能通过检查基因表达和代谢中的网络相似性,以及它们与与神经退行性疾病进展有关的结构途径的关系。
