2型糖尿病(T2DM)是扩大的全球健康问题之一,是最常见的代谢性疾病,其特征是高血糖,这显着有助于产生活性氧(ROS)。文献中已经提到了400多种具有降血糖活性的植物。Clitoria ternatea(C。ternatea)通常称为蝴蝶豌豆或亚洲鸽子,是Fabaceae家族的植物种类成员。这项研究的主要目的是评估链霉菌素(STZ)产生的正常和糖尿病2中的甲状腺梭菌(CT-MX)和/或壳聚糖负载的纳米颗粒(CHNPS)抗透明血糖和抗氧化作用的甲醇提取物。总共将20个雄性白化大鼠分为4组,对照非糖尿病(NC),STZ/糖尿病控制,STZ/糖尿病 + CT -MX和STZ/糖尿病 + CT -CHNPS组。28天后,评估了评估评估胰岛素水平,空腹血糖(FBG),天冬氨酸转氨酸酶(AST),丙氨酸转氨酶(ALT),超氧化物歧化酶(SOD),谷胱甘肽(GSH),脂质过氧化物过氧化物和mRNA基因的表达。对胰腺组织进行了组织病理学和免疫组织化学研究。在STZ/糖尿病(GP2)大鼠中,FBG,AST,ALT以及CDKN1A和TP53基因表达的水平显着增加。此外,高血糖诱导的肝氧化态可以通过SOD和GSH水平的脂质过氧化和恶化的显着增加来证明。纳米载体剂在抗氧化后显示出极好的抗血糖和作用,使其成为糖尿病患者的有前途的技术。相反,STZ/糖尿病 + CT -MX和STZ/糖尿病 + CT -CHNP都显示出与糖尿病相关并发症的明显改善。但是,STZ/糖尿病 + CT -CHNP(GP4)大鼠显着抑制了产生的氧化应激和改善的抗氧化活性,肝功能和胰岛素分泌。此外,与GP2相比,它们的胰腺截面具有正常分布和β细胞数量的正常再生胰腺内分泌胰岛,与GP2相比,具有正常分布和β细胞的数量,并抑制炎症和凋亡基因表达的建筑。
1俄罗斯科学院普罗夫洛夫通用物理研究所,俄罗斯莫斯科119991 Vavilova St. 38; avsimakin@gmail.com(A.V.S.); Aleksej.baryshev@gmail.com(A.S.B.); pobedonoscevroman@rambler.ru(R.V.P.); inyabaymler@yandex.ru(i.v.b。); rebezov@yandex.ru(M.B.R.); rusa@kapella.gpi.ru(R.M.S.); astashev@yandex.ru(M.E.A。); dikovskayaao@gmail.com(A.O.D。); bronkos627@gmail.com(e.a.m.); v.kozlov@hotmail.com(V.A.K.); nbunkin@mail.ru(n.f.b。); iwe88@rambler.ru(v.e.i。); kuder_1996@mail.ru(k.o.a.); voronov@lst.gpi.ru(V.V.V.); shafeev@kapella.gpi.ru(G.A.S.)2俄罗斯科学院植物病理学研究所俄罗斯科学研究所,143050俄罗斯大维利齐米; cmakp@mail.ru(M.A.S.); kalinitch@mail.ru(V.P.K.)3尼兹尼·诺夫哥罗德州立大学生物学与生物医学研究所,603022尼兹尼·诺夫哥罗德,俄罗斯,俄罗斯4号州立辐射医学和保护国家关键实验室,放射学和跨学科科学学院(RAD-X)苏州215123,中国; gaomy@iccas.ac.cn(M.G.); liruibin@suda.edu.cn(r.l.)5,105005俄罗斯莫斯科7 A.A. Baikov冶金与材料科学研究所(IMET RAS),俄罗斯科学院,莱宁斯基潜在客户,49,119334,俄罗斯莫斯科; kolmakov@imet.ac.ru(A.G.K.); 79031927386@yandex.ru(M.A.K.)5俄罗斯科学院的细胞生物物理研究所,联邦研究中心,“俄罗斯科学学院的Push-Chino科学研究中心”,Institutskaya St.,3,142290 sharapov.mars@gmail.com 6鲍曼莫斯科州立技术大学基础科学系,2-ND Baumanskaya Str。8俄罗斯科学院理论与实验生物物理学研究所,俄罗斯街3号,142290,俄罗斯Pushchino; bruskov_vi@rambler.ru 9南俄罗斯土壤生育研究所,346493波斯安诺夫卡,俄罗斯10个国家纳米技术中心(Nanotec)国家科学技术发展局(NSTDA),111,111,Phahonyotin Rd,Klong Luang 12120,Thailand; nuttaporn@nanotec.or.th *通信:s_makariy@rambler.ru
范围:甜菜红素色素因其生物活性和抗炎特性而日益受到重视,尽管缺乏研究来证明单个甜菜红素的贡献。本文旨在比较四种主要甜菜红素对炎症和细胞保护标志物的影响,并强调两个主要亚类:甜菜红素和甜菜黄素之间潜在的结构相关关系。方法和结果:小鼠 RAW 264.7 巨噬细胞在与浓度为 1 至 100 µ M 的甜菜红素 (甜菜红素、新甜菜红素) 和甜菜黄素 (印度黄素、淡黄素 I) 孵育后,受到细菌脂多糖的刺激。所有甜菜红素均抑制促炎标志物 IL-6、IL-1 𝜷 、iNOS 和 COX-2 的表达,且甜菜红素的效果比甜菜黄素更强。相反,HO-1 和 gGCS 表现出混合且仅适度的诱导作用,而甜菜红素的效果更为突出。虽然所有甜菜红素都抑制了超氧化物生成酶 NADPH 氧化酶 2 (NOX-2) 的 mRNA 水平,但只有甜菜红素能够抵消过氧化氢诱导的活性氧 (ROS) 生成,这与它们的自由基清除潜力一致。此外,甜菜红素具有促氧化特性,使 ROS 生成量超过过氧化氢刺激。结论:总之,所有甜菜红素都表现出抗炎特性,尽管只有甜菜红素表现出自由基清除能力,这表明在氧化应激条件下可能存在不同的反应,这需要进一步研究。
保留所有权利。未经许可就不允许重复使用。(未经同行评审证明)是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。此预印本版的版权持有人于2023年7月13日发布。 https://doi.org/10.1101/2023.07.13.23292592 doi:medrxiv preprint
“口服微生物群”是生活在口腔和口咽中的微生物的完整补体,是人体中最多样化的[7]。受遗传学,饮食和环境的影响,长期以来,它会影响局部和系统的健康状况,并且失调可能使人患有疾病,包括癌症[8,9]。与生殖器HPV感染和宫颈癌的进展一样,我们假设微生物营养不良症在口服HPV感染和向OPC的进展中也起着重要作用。因此,了解口腔微生物群如何影响口服HPV感染的自然史以及与HPV相关的OPC的倾向将有助于为未来的预防工作提供信息。这项研究的目的是表征中年男性队列中的口服微生物群,并根据普遍的口服高风险HPV感染状态确定变化。
应激会导致细胞损伤,例如对DNA,蛋白质和脂质膜的损伤[3]。烟酰胺腺苷二核苷酸磷酸(NADPH)氧化酶(NOX)是一种与膜相关的连接络合物,它使用NADPH作为电子供体来催化单电子还原氧的减少[4]。NOX被视为糖尿病中葡萄糖诱导的ROS形成的主要来源[5]。髓过氧化物酶(MPO)是过氧化物酶亚科的成员,它催化了过氧化氢和氯离子之间的反应,从而产生次醛酸,这是中性粒细胞产生的最强大的杀菌氧化剂[6]。在一项研究中,在患有和没有心血管疾病症状的T2D患者中发现血浆MPO活性显着增强[7]。该观察结果表明,血液中的MPO活性升高可能是T2D患者氧化应激和心血管风险的附加标志。自由基的氧化活性的表现可以通过测量生物系统中的氧化产率来获得[8]。因此,脂质过氧是氧化应激的最有用的生物标志物。丙二醛(MDA)是脂质过氧化的最终产物之一,最终在氧化条件下血浆增加[9]。总氧气应激(TOS)通常用于估计体内的整体氧化态。因此,较高水平的ROS会导致脂质,氨基酸,植物和蛋白质的过氧化,并产生羟氧化物的产生[10]。中性粒细胞与淋巴细胞比(NLR)也反映了氧化应激的存在[14]。先前的研究报告说,通过测量氢过氧化物的水平,T1D [11]和T2D患者的氧化应激增加。已经表明,即使在正常范围内,升高的白血细胞(WBC)计数也与T2D中的宏观和微血管并发症都相关[13]。因此,本研究的目标是评估与对照组相比,糖尿病患者的某些氧化应激标志物(例如NOX和MPO,MDA和TOS)以及细胞炎性生物标志物。希望这些发现能够改善对T2D中氧化应激和炎症的复杂病理生理学的理解。
MYC 是多种肿瘤类型中的关键致癌驱动因素,但同时也使癌细胞具有一系列脆弱性,为有针对性的药物干预提供了机会。例如,抑制线粒体呼吸的药物会选择性地杀死 MYC 过表达的细胞。在这里,我们揭示了这种合成致死相互作用的机制基础,并利用它来提高呼吸复合物 I 抑制剂 IACS- 010759 的抗癌作用。在 B 淋巴细胞系中,异位 MYC 活性和 IACS- 010759 治疗加在一起会诱导氧化应激,从而导致还原谷胱甘肽的消耗和氧化还原稳态的致命破坏。这种效果可以通过抑制通过戊糖磷酸途径产生的 NADPH 或抗坏血酸(维生素 C)来增强,已知抗坏血酸在高剂量时可充当促氧化剂。在这些情况下,抗坏血酸与 IACS- 010759 协同作用,在体外杀死 MYC 过度表达细胞,并增强其对人类 B 细胞淋巴瘤异种移植的治疗作用。因此,复合物 I 抑制剂和高剂量抗坏血酸可能会改善高级别淋巴瘤和其他可能由 MYC 驱动的癌症患者的预后。
摘要:活性氧(ROS)是自由基氧中间体,在信号转导中是重要的第二使者。但是,当这些分子的积累超过抗氧化剂酶的缓冲能力时,会发生氧化应激和内皮细胞(EC)功能障碍。ec功能障碍将血管系统转变为促凝的,促进的炎症状态,从而增加患心血管疾病(CV)疾病和代谢疾病的风险。研究已转向对CV风险因素的microRNA处理的研究,因为这些转录后调节剂已知可以共同调节ROS。在这篇综述中,我们将讨论ROS途径和产生,正常的内皮细胞生理学和ROS诱导的功能障碍,以及当前对常见代谢性疾病的知识及其与氧化应激的联系。还将探索基于microRNA的治疗策略,以响应氧化应激和microRNA在控制ROS中的调节作用。重要的是要深入理解产生ROS的机制以及如何操纵这些酶促副产品可以保护内皮细胞功能免受氧化应激的影响并防止血管疾病的发展。
摘要:2型糖尿病(T2D)和骨质疏松症(OP)是造成健康和经济负担的发病率和死亡率的主要原因。最近的流行病学证据表明,这两种疾病通常彼此相关,而T2D患者的骨折风险增加,使骨骼成为糖尿病的额外靶标。对于其他糖尿病并发症发生,晚期糖基化最终产物(年龄)和氧化应激的积累增加代表了解释T2D中骨骼脆弱性的主要机制。这两种情况都直接或间接(通过促进微血管并发症)会损害骨骼的结构延展性并对骨骼的转换产生负面影响,从而导致骨质质量受损,而不是降低骨密度。这使糖尿病引起的骨骼脆弱与其他形式的OP明显不同,并且代表了断裂风险地层的主要挑战,因为BMD的测量或使用常见的OP算法的使用量很差。我们审查并讨论了T2D中骨骼脆弱性的年龄和氧化应激对骨骼脆弱性的病理生物生物生物生物的作用,从而提供了一些有关如何改善T2D患者断裂风险预测的指示。
结果:在母体炎症时,新生儿小鼠中BBB完整性明显降低。同时,在BBB受损的大脑以及LPS处理的BMEC中,FGL2表达始终增加。FGL2缺乏减弱了BBB的过敏性,防止了TJ蛋白的下降,并降低了暴露于LPS的幼崽中的细胞因子表达。从机械上讲,在体内和体外暴露于LPS后,氧化应激的指标以及PI3K/NF-K B途径的激活被上调。FGL2缺失减少了ROS的产生,NO的产生减少了内皮iNOS和NOX2表达式,并抑制了PI3K/NF-K B途径激活。此外,LY294002对PI3K的抑制减少了LPS处理的野生型BMEC中的氧化应激。而,慢病毒对PI3K的过表达重新出现了NOX2和INOS的诱导以及FGL2删除的BMEC中的NF-K B激活。