植物免疫中的RNA沉默:超越武器竞赛?Sara Lopez-Gomollon,David C Baulcombe *植物科学系,剑桥大学,唐宁街,剑桥CB2 CB2 CB2 3EA UK *通信D.C.B.:dcb40@cam.ac.uk摘要RNA沉默已被很好地确定为植物中的一种抗病毒系统,在该植物中,小(S)RNA指导防御靶标对病毒RNA或DNA中的靶标的Argonaute蛋白效应子。病毒编码的沉默抑制剂抵消了这种防御系统。本综述总结了有关抗病毒RNA沉默的最新发现,包括RNA通过plasmodesmata的运动以及植物如何区分自我与病毒RNA。我们还描述了新兴的图片,即除抗病毒防御外,RNA沉默在针对非病毒病原体的植物免疫力中发挥作用。通过囊泡和其他结构以及通过这些生物体编码的沉默抑制器的作用,RNA向感染的植物细胞向感染的植物细胞的反式运动介导了这种对一般免疫力的影响。也存在RNA沉默对一般免疫力的影响,因为宿主编码的SRNA,包括微(MI)RNA,调节植物先天免疫系统中的类似点状受体和防御信号通路。这些RNA沉默途径构成了一个过程网络,对植物的免疫状态具有正面和负面影响。引言植物中的RNA沉默首先被确定为转基因和病毒感染的转录后机制1,2。它是由病毒或转基因RNA触发的,关键的中间分子是双链(DS)或DICER的发夹RNA底物(植物中的DCL)。在某些系统中,DSRNA由作用于单个链分子的RNA依赖性RNA聚合酶(RDR)产生,而21-24NT RNA DCL衍生的片段通常称为小(S)RNA(Box 1)。这些片段的单链衍生物与Argonaute(AGO)蛋白形成核蛋白,它们通过Watson-Crick Base配对引导它们以靶向RNA。agos是核酸酶,在规范的RNA沉默中(图1A),靶RNA被裂解SRNA的相反位置10,尽管存在如下所述的变体机制。该系统在抗病毒防御中有效,因为特异性是由源自病毒基因组的SRNA赋予的。由于每个双链RNA的DICER裂解成多个SRNA(Box 1),它也具有扩增属性。此外,SRNA在细胞之间是可移动的,因此它们可以在感染前部或前方或前方的病毒RNA和Prime Agos之前移动或前进(图1B)。与其他防御系统一样,带有RNA沉默,并且与宿主病原体相互作用的“武器竞赛”概念一致,病毒编码了抑制器,这些抑制器抵消了RNA沉默3-5的防御作用(Box 2和图2)。包括蠕虫,昆虫和哺乳动物在内的动物在感染细胞中产生病毒SRNA 2,6,7,对病毒的保护很可能是RNA的保守而古老的作用
深处的实验室基础设施已广泛用于探索罕见事件,例如质子衰减,暗物质搜索或中微子相互作用,利用了它们的大型MUON液压减少。但是,只有很少的研究评估了低背景辐射环境对生物体的影响。以此目的,Canfranc地下实验室(LSC)于2021年推出了生物学平台,为批准的生物学实验提供了实验室空间。已经建立了两个相同的实验室(地下和表面),以在相同条件下复制生物学实验,主要区别是宇宙辐射背景。使用LSC设施的访问协议包括每年两个打开的电话,并为执行实验程序分配了时间窗口,这导致了第一个批准并已经运行的实验。我们描述了Canfranc生物学平台的科学计划,该计划探讨了极端粒子,病毒感染,免疫系统,多细胞性,发育或衰老的宇宙沉默以及第一个实验结果。该平台还允许在没有辐射的情况下观察生命对微重力的反应,这是探索太空生命的关键条件。
RUO分析合并:•将评估新颖的测定法,以检测血液中直接的CCCDNA活性,并有助于临床疗效并定义成功。•随着数据的出现,必须讨论此MOA的NUC停止标准的决策。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2025年2月10日发布。 https://doi.org/10.1101/2025.02.10.637372 doi:Biorxiv Preprint
源自 Cas9 RNA 引导核酸酶的遗传工具为研究和改造细菌提供了必不可少的能力。虽然在 Cas9 应用于哺乳动物细胞的早期就已注意到脱靶效应的重要性,但由于细菌基因组较小,因此很容易避免 Cas9 在细菌基因组中的脱靶切割。尽管如此,一些研究报告了 Cas9 表达有毒的实验设置,即使使用催化失活的 Cas9 变体 (dCas9)。具体而言,dCas9 在与共享特定 PAM(原间隔区相邻基序)近端序列基序的引导 RNA 复合时具有毒性。在这里,我们证明这种毒性是由 Cas9 与必需基因启动子的脱靶结合引起的,脱靶基因的沉默发生在 PAM 近端序列中仅 4 个 nt 的同一性处。在大肠杆菌和其他肠细菌的各种菌株中进行的筛选表明,有毒向导 RNA 的性质会随着脱靶位置序列的进化而改变。这些结果凸显了 Cas9 可能与细菌基因组中数百个脱靶位置结合,从而导致不良影响。在设计和解释细菌中的 CRISPR-Cas 实验时必须考虑这一现象。
10。我们承认通用和有意义的连通性以及负担得起的访问在释放数字和新兴技术的全部潜力方面的关键作用。我们承诺将所有人连接到互联网。我们认识到,这将需要牢固的合作伙伴关系,并增加政府和其他利益相关者,尤其是私营部门的发展中国家的金融投资。我们肯定了国际电信联盟(ITU)在促进普遍和有意义的连通性中的重要作用。我们认识到,创新的解决方案可以帮助提供高速连通性,除其他,服务不足,偏远和农村地区。
1 美国农业部农业研究服务处西部地区研究中心,美国加利福尼亚州奥尔巴尼,2 Takara Bio USA, Inc.,美国加利福尼亚州山景城,3 美国纽约州纽约市哥伦比亚大学医学系,4 美国纽约州纽约市哥伦比亚大学人类营养研究所,5 德国汉堡汉堡大学食品科学学院、食品化学研究所,6 美国堪萨斯州曼哈顿市美国农业部农业研究服务处谷物与动物健康研究中心硬质冬小麦品质实验室,7 美国纽约州纽约市哥伦比亚大学乳糜泻中心,8 美国纽约州瓦尔哈拉纽约医学院医学系
模型植物拟南芥编码10个AGO,根据氨基酸序列同源性可分为三组。属于第 1 组和第 2 组的 RISC 主要在细胞质中发挥作用,切割目标 RNA 或抑制蛋白质合成。属于第 1 组的 AGO1-RISC 在植物发育、分化和应激反应中起重要作用,而属于第 2 组的 AGO2-RISC 参与抗病毒反应。另一方面,属于第3组的RISC已知能与细胞核内合成的RNA结合,促进附近DNA的甲基化,并使转座子和非自身基因(具有转移能力的DNA)沉默(图1)。尽管我们对植物 RISC 功能的理解已经取得了进展,但每个 RISC 与哪些核酸序列紧密结合仍不清楚。在本研究中,立教大学理学院副教授岩川弘隆阐明了拟南芥三组 RISC 的核酸结合特性。首先,利用植物无细胞翻译系统(注4)合成AGO蛋白,并在其中添加小RNA,形成了属于第1组的AGO1-RISC、属于第2组的AGO2-RISC、以及属于第3组的AGO4-RISC、AGO6-RISC、AGO9-RISC。将纯化的RISC与和小RNA完全互补(形成碱基对)或部分序列错配(不形成碱基对)的单链RNA或DNA混合,利用被称为滤膜结合测定(注5)的生化技术定量分析结合亲和力(图2)。结果表明,与第1组和第2组相比,第3组RISC具有即使3'辅助区(注6)的互补性较低也能够结合(容忍错配)的特性(图3)。更有趣的是,我们发现在细胞质中发挥作用的第 1 组和第 2 组 RISC 与 RNA 紧密结合,而在细胞核中发挥作用的第 3 组 RISC 与 DNA 的结合比与 RNA 的结合更强(图 3)。这些结果表明,每组 RISC 都进化出了不同的靶标结合特性来发挥其独特的功能。这项研究不仅加深了我们对植物RNA沉默机制的理解,而且表明存在一种以前未知的机制,即真核RISC通过直接结合DNA发挥作用。此外,这些发现有望成为应用植物RISC创建基因表达控制技术的基础。 4. 期刊名称:核酸研究(在线版) 论文标题:植物 RISC 的进化枝特异性靶标识别机制 作者:岩川宏大 DOI 编号:10.1093/nar/gkae257 5. 研究项目 本研究得到了日本科学技术振兴机构的紧急研究支持计划(主要研究员:岩川宏大,项目编号:JPMJFR204O)、日本科学技术振兴机构的战略基础研究促进计划 PRESTO(主要研究员:岩川宏大,项目编号:JPMJPR18K2)以及文部科学省的青年科学家资助 A(主要研究员:岩川宏大,项目编号:16H06159)和基础研究 B(主要研究员:岩川宏大,项目编号: 23H02412)。 6. 研究内容相关咨询处 立教大学理学院生命科学系 副教授 岩川弘树 电话:03-3985-2687 邮箱:iwakawa[at]rikkyo.ac.jp <JST 项目相关咨询> 科学技术振兴机构 紧急研究推进部 东出隆伸 电话:03-5214-7276 邮箱:souhatsu-inquiry[at]jst.go.jp