摘要:驾驶舱监控不力已被确定为导致航空事故的重要因素。因此,改进飞行员的监控策略有助于提高飞行安全性。在两个不同的环节中,我们在全飞行模拟器中分析了专业航空公司飞行员的飞行性能和眼球运动。在预训练环节中,20 名飞行员以飞行员飞行 (PF) 的身份执行了手动进近场景,并根据其飞行性能分为三组:不稳定、标准和最准确。不稳定的飞行员对各种仪器的关注不足或过度。他们的视觉扫描模式数量低于设法稳定进近的飞行员。最准确的飞行员表现出更高的感知效率,注视时间更短,对重要主要飞行仪表的注视更多。大约 10 个月后,14 名飞行员返回进行后续训练。他们接受了一项短期培训计划,并执行了与预训练课程类似的手动方法。其中七人(实验组)收到了关于他们自己的表现和视觉行为(即在预训练课程期间)的个人反馈,以及从最准确的飞行员那里获得的各种数据,包括一段眼动追踪视频,其中显示了最准确的飞行员之一的有效视觉扫描策略。另外七人(对照组)收到了有关驾驶舱监控的一般指导。在训练后阶段,实验组的飞行表现更好(与对照组相比),其视觉扫描策略与最准确的飞行员的视觉扫描策略更加相似。总之,我们的结果表明,驾驶舱监控是手动飞行性能的基础,并且可以使用主要基于高度准确的飞行员的眼动示例的训练计划来改进它。
评估混合倡议团队中人类互动人的认知工作量是自主互动系统的关键能力,可以使适应能够改善团队绩效。然而,由于证据的分歧,仍然尚不清楚,这种传感方式可能最适合确定人类工作量。在本文中,我们报告了一项实证研究的结果,该研究旨在通过收集眼睛注视和脑脑脑(EEG)数据来回答这个问题,该数据来自人类受试者,执行交互式多模式驾驶任务。通过介绍驾驶过程中的对话,制动事件和触觉刺激(例如对话,刹车事件和触觉刺激)来产生不同级别的认知工作量。我们的结果表明,瞳孔直径比脑电图更可靠的工作量预测指标。,更重要的是,结合了提取的脑电图和学生直径功能的五种不同的机器学习模型都能仅仅显示了工作负载分类的任何改进,而不是眼神凝视,这表明眼睛凝视是一种足够的方式,可以评估人类的认知工作负载,以评估人类的互动,多模式,多任务,多任命,多任务设置。
摘要:车辆外部的干扰会导致视觉注意力分散,从而导致交通事故。作为一种低成本、高效的广告解决方案,广告牌被广泛安装在路边,尤其是高速公路上。然而,广告牌对驾驶员分心、目光注视和认知的影响尚未得到充分研究。本研究利用定制的驾驶模拟器和同步脑电图 (EEG) 和眼动追踪系统来研究与驾驶员视觉信息处理相关的认知过程。区分了与辅助驾驶刺激相关的目光注视和其他可能成为分心源的刺激。本研究比较了驾驶员对广告牌注视和车辆仪表板注视的认知反应。测量的眼球注视相关电位 (EFRP) 显示 P1 成分相似;然而,随后的 N1 和 P2 成分不同。此外,当驾驶员受到限速标志提示而调整行驶速度时,会观察到 EEG 运动反应。实验结果表明,所提出的测量系统是评估驾驶员认知的有效工具,并表明对广告牌的认知参与水平可能是驾驶员分心的前兆。将实验结果与文献中的人类信息处理模型进行了比较。
摘要:车辆外部的干扰会导致视觉注意力分散,从而导致交通事故。作为一种低成本、高效的广告解决方案,广告牌被广泛安装在路边,尤其是高速公路上。然而,广告牌对驾驶员分心、目光注视和认知的影响尚未得到充分研究。本研究利用定制的驾驶模拟器和同步脑电图 (EEG) 和眼动追踪系统来研究与驾驶员视觉信息处理相关的认知过程。区分了与辅助驾驶刺激相关的目光注视和其他可能成为分心源的刺激。本研究比较了驾驶员对广告牌注视和车辆仪表板注视的认知反应。测量的眼球注视相关电位 (EFRP) 显示 P1 成分相似;然而,随后的 N1 和 P2 成分不同。此外,当驾驶员受到限速标志提示而调整行驶速度时,会观察到 EEG 运动反应。实验结果表明,所提出的测量系统是评估驾驶员认知的有效工具,并表明对广告牌的认知参与水平可能是驾驶员分心的前兆。将实验结果与文献中的人类信息处理模型进行了比较。
摘要 自动更正是移动文本输入的标准功能。虽然最先进的自动更正方法的性能通常相对较高,但发生的任何错误都很麻烦,会中断文本输入流程,并挑战用户对过程的自主性。在本文中,我们描述了一个旨在自动识别和修复自动更正错误的系统。该系统包括一个多模态分类器,用于根据大脑活动、眼神注视和上下文信息检测自动更正错误,以及一种通过替换错误更正或建议替代方案来修复此类错误的策略。我们将这两个部分集成到一个通用的 Android 组件中,从而提出了一个研究自我修复端到端系统的研究平台。为了证明其可行性,我们进行了一项用户研究来评估我们方法的分类性能和可用性。
我们研究了开发决策支持系统 (DSS) 的可能性,该系统集成了眼球注视测量,以便更好地调整其建议。事实上,眼球注视可以洞察人类的决策:个人倾向于更加关注与他们即将做出的选择一致的关键信息。因此,眼球注视测量可以帮助 DSS 更好地捕捉决定用户决策的背景。22 名参与者进行了简化的空中交通管制 (ATC) 模拟,他们必须根据屏幕上显示的特定参数值决定接受或修改路线建议。记录了每个参数的决策和注视时间。算法使用用户注视时间来估计每个参数对其决策的效用。在此训练阶段之后,算法立即在两种条件下生成新的路线建议:1) 考虑参与者的决策,2) 使用显示参数上的停留时间测量,考虑参与者的决策及其视觉行为。结果表明,在考虑参与者的决策时,系统建议比基础系统更准确,使用他们的停留时间甚至更准确。使用眼动仪捕捉决策的关键信息加速了 DSS 的学习阶段,从而有助于进一步提高连续建议的准确性。此外,探索性
注视,即盯着单一仪器,通常是有原因的,但效果不佳。例如,飞行员可能会盯着低于指定高度 200 英尺的高度计读数,并想知道指针是如何到达那里的。在注视仪器时,可能会无意识地对控制装置施加越来越大的张力,这会导致未被注意到的航向变化,从而导致更多错误。另一种常见的注视可能是在开始改变姿态时。例如,为 90° 转弯建立了一个浅坡度,飞行员没有保持对其他相关仪器的交叉检查,而是在整个转弯过程中盯着航向指示器。由于飞机正在转弯,因此在转弯后约 25 秒内无需重新检查航向指示器。这里的问题可能并不完全是由于交叉检查错误造成的。这可能与仪器解释困难有关。读取航向指示器的不确定性(解释)或由于转弯时滚动不一致而导致的不确定性(控制)可能会导致注视。
一种用于视觉诱发脑电图 (EEG) 信号的干电极头戴式传感器已经进入游戏市场,它可以无线、低成本地实时跟踪用户对目标区域的注视。与传统的 EEG 传感器不同,这种新设备易于非专业人员设置。我们进行了一项菲茨定律研究 (𝑁 = 6),发现平均吞吐量 (TP) 为 0.82 位/秒。该传感器性能稳定,错误率低于 1%。总体中位激活时间 (AT) 为 2.35 秒,一个和九个并发目标之间的差异很小。我们讨论了该方法是否可以补充基于摄像头的注视交互,例如,在注视输入或轮椅控制方面,并注意到一些局限性,例如 AT 速度慢、浓密头发时校准困难以及 10 个并发目标的限制。
摘要 在他人注视方向和所观察物体之间建立联系的能力对社会认知和学习的发展具有重要意义。在本研究中,我们通过实施面对面的现场范式分析了一组 9 个月大婴儿的 alpha 和 theta 波段振荡,该范式为婴儿提供了与真实人类的三元社会互动。我们比较了两种实验条件下的神经激活情况:物体出现后的一致和不一致凝视转移。在不一致物体注视转移条件下,我们观察到与一致条件相比,theta 功率有所增加。我们还发现,在一致物体注视条件下,alpha 活动比不一致物体注视条件下有所增强。这些发现证实了当他人的目光转向参考目标时,theta 和 alpha 波段活动参与了对目光的检测。我们认为 theta 波段调节可能与意外事件的处理有关。此外,在一致物体凝视条件下,alpha 波段活动的增加似乎与之前关于生命第一年之前出现的内部控制注意力机制的研究结果一致。与非现场标准范式相比,现场范式的实施引发了部分不同的振荡模式,支持了重现现实生活条件的生态设置对于研究社会认知发展的重要性。
• 驾驶员识别(GMM) • 车辆跟驰行为建模(GMM) • 车道变换轨迹建模(HMM+GMM) • 驾驶员烦躁检测(贝叶斯网络) • 根据驾驶行为检测危险点 • 使用事件记录器评估驾驶员风险 • 驾驶诊断和反馈系统 • 驾驶数据检索系统 • 驾驶员注视和车辆操作建模(HMM) • 跟踪驾驶员观察到的路边标志 • 分析自动驾驶时的驾驶员注视行为 • 使用眨眼检测乘客焦虑(点过程) • 使用深度学习实现自动驾驶(CNN、RNN、AE、GAN、Transformer……)