a 韩国科学技术研究院脑科学研究所脑疾病中心,首尔 02792,韩国 b 汉阳大学 HY-KIST 生物融合系,首尔 04763,韩国 c 崇实大学化学系和综合基础科学研究所,首尔 06978,韩国 d 韩国科学技术研究院研究资源部研究动物资源中心,首尔 02792,韩国 e 釜山国立大学化学系,釜山 46241,韩国 f 亚洲大学分子科学与技术系,水原 16499,韩国 g 加州大学洛杉矶分校 (UCLA) 化学与生物化学系,洛杉矶,CA 90095-1569,美国 h 加州大学洛杉矶分校 (UCLA) 大卫格芬医学院 Vatche 和 Tamar Manoukian 消化系统疾病科系统生物医学中心,洛杉矶, CA 90095,美国 i 汉阳大学医学院病理学系,首尔 04763,韩国
forn yuen stessman ruzo 41%50%37%41%44%adcy3 adcy3 adcy5 adnp adnp adnp adnp adnp adnp agap2 agap2 agap2 akap9 ank2 ank2 ank2 ank2 ank2 ank2 ank2 ank2 ank2 ank2 ank2 ank2 ankrd11 ankrd11 ankrd11 ankrd11 ankrd11 ankrd11 ap2s1 ariD1b ARID1B ARID1B ARID1B ARID1B Ash1l Ash1l Ash1l Ash1l Asxl3 ASXL3 ASXL3 Babrb3 Bcl11a Bcl11a Bcl11a BRIN2B BTRC CACNA1E C16ORF13 CELF4 CACNA2D3 CACNA2D3 CACNA2D3 CASK CAPN12 CDC42BPB CCSER1 CHD2 CHD2 CHD2 CHD2 CHD2 CHD8 CHD8 CHD8 CHD8 CHD8 CHD8 CHD8 CIC CIC CIC CMPK2 CLASP1 CLASP1 COL4A3BP CNABP CNABP CTNNNB1 CTNNB1 CTNNB1 CTNNB1 CTNB1 CTNBP2 CUL3 CUL3 CUL3 DEAF1 DDX3X DIP2C DDX3X DDX3X DDX3X DNMT3A DNMT3A DNMT3A DNMT3A DIP2A DNMT3A DPYSL2 DPYSL2 DLGP4 DLGAP4 DLGAP1 DSCAM DSCAM DSCAM DSCAM DSCAM DSCAM DSCAM DSCAM DSCAM DSCAM DOCK8 DSCAM DYSCAM DYSC1H1 DSCAM DSCAM DSCAM DRKAM DYRK1A DYRK1A DYRK1A dyrk1a dyrk1a dyrk1a EIF3G FMR1 FAM47A ERBIN ETFB FAM98C FOXP1 FOXP1 FOXP1 FOXP1 FOXP1 FOXP1 FOXP1 FOXP2 GABRB3 GFAP GFAP GIGYF1 GIGYF1 GIGYF1 GIGYF1 GIGYF2 GIGYF1 GNAI1 GNAI1 GNAI1 GRIN2B Grin2B Gria1 Irf2BPL KDM6A HIVEP3 GRIN2B KCNQ3 ILF2 ILF2 KDM5B ITPR1 INTS6 KDM6B Kdm6B Kdm6B Kiaa0232 Kiaa2022 Katnal2 Katnal2 KMT2A KMT2A KDM5B KMT2C KMT2C KMT2C KMT2C KMT2E KMT2E KMT2E KMT5B KMT5B KMT5B KMT5B KMT5B KMT5B LDB1 LAMC3 MFRP MAP1A MECP2 MECP2 MECP2 MECP2 MECP2 MLANA MBD5 MED13L MED13L MED13 MED13 MED13L div>
强烈的、无法缓解的气道炎症反应会导致囊性纤维化 (CF) 患者的破坏性肺部疾病。巨噬细胞免疫功能失调可能是控制 CF 肺部疾病进展的一个关键方面,但其潜在机制尚不完全清楚。我们使用 5′ 端为中心的转录组测序来分析铜绿假单胞菌 LPS 激活的人类 CF 巨噬细胞,结果显示 CF 和非 CF 巨噬细胞在基线和激活后部署了截然不同的转录程序。这包括与健康对照相比,激活的患者细胞中 I 型 IFN 信号反应明显减弱,但在患者细胞中使用 CFTR 调节剂进行体外治疗以及通过 CRISPR-Cas9 基因编辑来纠正患者来源的 iPSC 巨噬细胞中的 F508del 突变后,这种反应是可逆的。这些发现表明,人类 CF 巨噬细胞中存在以前未被发现的免疫缺陷,这种缺陷依赖于 CFTR,并且可以通过 CFTR 调节剂逆转,从而为寻找 CF 中的有效抗炎干预措施提供了新的途径。
20 世纪 70 年代末,Yasuda 进一步阐述了等离子体聚合的概念。[4] 在低 SEI 条件下,等离子体聚合物薄膜的沉积速率通常随能量输入线性增加,在较高能量下接近饱和。从沉积速率与 SEI 关系的总体趋势来看,高于表观活化能的行为可以用类阿伦尼乌斯方程来描述,以 SEI 代替温度。[5] 同时,该方法被证明适用于许多不同的单体,即可聚合分子,从而实现等离子体聚合。[6-11] 此外,该概念还包括使用功率调制,通过施加开/关脉冲来降低等离子体中的平均功率输入,旨在增强单体的结构保留。 [ 12,13 ] 同样,按照阿伦尼乌斯形式用 SEI 代替温度可能对等离子体转化、等离子体催化和等离子体喷射烧结有用 [ 14 – 16 ] — — 尽管这仍然是一个有争议的话题。[ 17 ]
有趣的是,在用荧光团末端标记锚定寡核苷酸并使用表面诱导荧光猝灭来监测 DNA 链运动的实验中,系统地观察到了预期 ms 范围内的链动力学。27,28 荧光猝灭和电化学实验都要求 DNA 链的末端标记在(亚)纳米距离内接近锚定表面,尽管在荧光中没有发生电子转移。这表明通过电化学测得的慢速率常数反映了电子转移步骤而不是链动力学的动力学控制。本研究旨在通过以下方式解决这个问题:(i)组装模型端接氧化还原寡核苷酸系统,(ii)用快速扫描速率循环伏安法表征其电化学响应,和(iii)基于真实的 DNA 分子动力学模型解释结果。这些模拟以前在计算上是无法实现的或定量不够的,但随着粗粒度序列依赖性 DNA 模型(如 oxDNA)的细化,这些模拟成为可能。29 对于目前的工作,我们开发了专用于电化学应用的代码(Qbiol),能够及时以数字方式重现和解析锚定 DNA 的完整动力学。我们的证据表明,单链和双链氧化还原寡核苷酸的电化学响应实际上都是由电极上的电子转移动力学控制的,符合马库斯理论 30-32 但是由于氧化还原标签附着在柔性 DNA 链和电极上,重组能大大降低。重组能的降低极大地改变了氧化还原 DNA 链的电化学响应,这种改变可能被误认为是扩散或弹性弯曲控制。此外,ssDNA 和 dsDNA 的重组能明显不同,这在很大程度上导致了
摘要:癌症是全球第一大死亡原因,其次是心脏病和中风,是迄今为止死亡率最高的疾病。我们对各种癌症在细胞水平上的运作方式有了很大的了解,这使我们实现了所谓的“精准医疗”,即每次诊断检查和治疗程序都是针对患者量身定制的。FAPI 是可用于评估和治疗多种癌症的新型示踪剂之一。本综述的目的是收集有关 FAPI 治疗诊断的所有已知文献。在四个网络图书馆(PUBMED、Cochrane、Scopus 和 Web of Sciences)上进行了 MEDLINE 搜索。收集了所有包括使用 FAPI 示踪剂进行诊断和治疗的可用文章,并通过 CASP(批判性评价技能计划)问卷进行系统评价。共有 8 条记录被认为适合 CASP 审查,时间范围从 2018 年到 2022 年 11 月。这些研究经过了 CASP 诊断检查表,以评估研究目标、诊断和参考测试、结果、患者样本描述以及未来应用。样本大小和肿瘤类型各不相同。只有一位作者使用 FAPI 示踪剂研究了一种类型的癌症。疾病进展是最常见的结果,没有发现相关的附带影响。尽管 FAPI 治疗诊断学仍处于起步阶段,缺乏坚实的基础将其引入临床实践,但迄今为止,它没有表现出任何阻碍患者给药的附带影响,并且具有良好的耐受性。
摘要 - 有机废物已成为城市地区的一个大环境问题。食物浪费和植物废物是来自家庭,校园环境和食品行业的有机废物的一部分。这种有机废物的占垃圾填埋场中处置的总废物的比例很高。有机废物还污染了环境,导致严重的温室气体排放。扔掉食物垃圾会产生甲烷气体,这对环境有害并导致全球变暖。为了避免食物浪费的甲烷气体和环境污染的大规模生产,非常重要的是,通过鼓励浪费回收利用,例如通过堆肥过程中的农业中使用诸如农业中的有机肥料之类的废物来最大程度地减少食物浪费。因此,有必要寻找可以通过SNI产生堆肥质量来加速堆肥过程的生物激活剂。本文介绍了可以加速堆肥速率的各种生物激活剂的使用的回顾。研究表明,已经使用了各种生物激活剂来源来堆肥食物浪费,例如水果,蔬菜,植物纤维和农业废物。需要进一步的研究来查看生物激活剂在堆肥过程中更好地组合。
的人,在动脉高血压或2型糖尿病患者中培养了MSNA,但是当两种疾病合并时,更多的是(Huggett等人,2003年; Kobayashi等。,2010年)。与没有2型糖尿病的人体质量指数匹配的对照组相比,2型糖尿病患者的MSNA也增加了(Huggett等人,2005年)。此外,与葡萄糖耐受性受损的人相比,2型糖尿病患者的交感神经神经术和去甲肾上腺素的溢出都增加了,2012年)。最近的一项荟萃分析得出的结论是,2型糖尿病患者的MSNA增加,但在1型糖尿病患者中没有增加(Grassi等人,2020)。开发介入诸如肾神经消融或颈动脉窦刺激之类的介入疗法(Heusser等人。,2010年)对心脏代谢疾病患者的交感神经系统的靶向重新兴趣。然而,健康人的交感神经活动有很大的间隔(Keir等人,2020)。因此,我们在较大的2型糖尿病患者中使用微功能学评估了交感神经活动,以检验以下假设:相当一部分患者的交感神经活动增加。此外,我们试图确定该人群中交感活动的决定因素。
在肠道中,上皮因子条件传入的免疫细胞,包括单核细胞,以适应其激活阈值并防止不需要的炎症。结肠上表达细胞表达分泌的白细胞蛋白酶抑制剂(SLPI),这是活化B细胞(NF-κB)的NF Kappa轻链增强子的抑制剂(NF-κB),可介导对微生物刺激。已经提出了单核细胞对细胞外SLPI的摄取来抑制单核细胞活化。我们质疑单核细胞是否可以产生SLPI以及内源性SLPI是否可以抑制单核细胞激活。我们证明了人类THP-1单核细胞产生SLPI,并且可以在人肠道层次中检测到CD68 + SLPI产生细胞。敲低人类THP-1细胞中SLPI显着增加了NF-κB激活,随后C-X-C基序趋化因子配体8(CXCL8)(CXCL8)和TNF-α产生,响应微生物刺激。与缺乏全长SLPI或SLPI缺乏信号肽的SLPI缺陷型细胞挽救了NF-κB激活和细胞因子产生的抑制作用,表明内源性SLPI抑制单核细胞细胞活化。出乎意料的是,尽管有效摄取,但外源SLPI并未抑制CXCL8或TNF-α产生。我们的数据表明,内源性SLPI可以调节单核细胞激活的阈值,从而防止粘膜组织中共生细菌激活。
对可再生能源的日益重视导致氢和电池研究的研发工作激增。阳极析氧反应 (OER) 周围的密集电化学环境困扰着催化层、基底和多孔传输层的活性和稳定性,最终影响这两个行业。在此,我们报告了电位循环 (PC) 316L 不锈钢毡多孔传输层 (PTL) 用于阴离子交换膜水电解的好处。如 SEM、EDS、XPS、XRD 和拉曼光谱所示,PC 增加了表面粗糙度并通过铁的氧化产生了 CrFe 5 Ni 2 -O x H y 层。在三电极设置中进行的 PC 后测试显示极化电阻下降了约 68%,这反映在其用作阴离子交换膜水电解器 (AEMWE) 中的阳极时的性能上。总体而言,在阳极条件下对 PTL 进行电位循环在 AEMWE 中测试时可提高性能。可以考虑对不锈钢阳极实施这种处理,以提高 AEMWE 性能。