摘要:随着药物晶体表面积的增加可改善溶解动力学和有效的溶解度,纳米化药物晶体已成为一种成功的口服生物利用度的方法。最近,通过利用聚合物和表面活性剂赋形剂在结晶过程中,开发了自下而上的方法来直接组装纳米晶体,以控制晶体尺寸,形态和结构。然而,尽管重大研究研究了聚合物和其他单一添加剂如何抑制或促进药物系统中的结晶,但很少有工作研究多种赋形剂在药物晶体结构和结晶度的程度上的机械相互作用,从而影响配方性能。这项研究探讨了模型疏水药物晶体的结构和结晶度如何由于竞争性非离子表面活性剂(Polysorbate 80和sorbitan monooleate)和表面活性聚合物(甲基纤维素)之间的竞争性界面化学吸附而变化。经典分子动力学模拟突出了关键分子间相互作用,包括表面活性剂 - 聚合物络合和晶体表面表面活性剂筛选,修改所得的晶体结构。并行,在水凝胶薄膜中产生药物纳米晶体的实验证明了药物结晶度随着表面活性剂的重量分数的增加而增加。仿真结果揭示了整体晶体中的加速动力学与实验测量的结晶度之间的联系。关键字:纳米制剂,分子动力学,界面,聚合物,表面活性剂,结晶度据我们所知,这些是第一个模拟,该模拟直接表征了赋形剂表面组成的结果,并将结晶度的实验范围与分子晶体的结构变化联系起来。我们的方法提供了对纳米结晶中结晶度的机械理解,可以扩大口服可兑换的小分子疗法的范围。
c物理系,巴凡恩的Vivekananda科学,人文与商业学院,海得拉巴,Telangana,Telangana,500094,印度D,D d diveabhapatnam,Vishakhapatnam,Andhra Pradesh 530045,印度,印度纳米型纳米级液压型载体的使用,自1960年代以来,但是对于表面活性剂浓度,对结构和磁性的关注很少。本文研究了表面活性剂十二烷基硫酸钠(SDS)浓度对钴铁酸盐(COFE 2 O 4)纳米颗粒的影响,该纳米颗粒是在250°C和500°C的退火温度下通过反向胶束制备的。对SDS比率变化的样品(CO:SDS = 1:0.33,1:0.5,1:0.66)进行了XRD,TGA,TEM,FTIR和VSM研究。所有样品表现出单相尖晶石结构,晶体直径范围为10至18 nm。随着SDS浓度的增加,晶体的尺寸减小。TEM图像显示粒径在7.6 -17.7 nm的范围内。VSM调查显示样品的铁磁行为。相同浓度相对于退火温度相对于退火温度,观察到的增加反映了纳米颗粒的单域性质。这强调了退火条件在定制钴铁岩纳米颗粒中的关键作用,作为在纵向磁记录介质中的合适应用。(2024年3月26日收到; 2024年6月7日接受)关键词:钴与SDS比,粒径,反向胶束,十二烷基硫酸钠1.引言铁氧体磁性纳米颗粒一直是其广泛应用的最深入研究和研究的材料之一,包括铁氟烷基技术,磁性冷冻,磁共振成像(MRI),高密度记录,Spintronics,spintronics,抗肿瘤药物,抗肿瘤药物输送,磁性超热和其他[1-4]。钴铁氧体纳米颗粒由于其混合尖晶石结构而引起了很多兴趣,其中包含晶格中A和B位点的二价钴阳离子和三价铁阳离子[5]。钴铁氧体(COFE 2 O 4)具有显着的物理和机械性能,并且具有异常稳定和电绝缘性[6,7]。这些特殊特征使钴铁岩成为广泛医疗应用的可行竞争者[8]。合成铁氧体纳米颗粒的各种方法的目标是匹配其特征,例如粒度和分布,形状,团聚程度和粒子组成程度与特定应用。控制这些质量使您可以在各种应用中提高纳米颗粒的性能,包括磁数据存储,生物成像,催化和环境清理。sol-gel [9],共沉淀[10],微乳液[11]和其他流行的方法,它们具有其优点和局限性。
摘要使用可再生底物和自然过程的化学物质生产的可持续替代方法受到了广泛的鼓励。微生物表面活性剂或生物表面活性剂是由真菌,酵母菌和细菌合成的表面活性化合物。由于它们的代谢多功能性,细菌是最传统和著名的微生物表面活性剂生产者,是其典型代表的芽孢杆菌和假单胞菌。要成功地应用于行业,表面活性剂需要在制造过程中存在的恶劣环境条件下保持稳定性;因此,从极端粒子衍生的生物表面活性剂的牙齿是发现新颖和有用分子的一种有希望的策略。细菌表面活性剂显示出有趣的特性,适用于石油工业,食品,农业,药品,化妆品,生物修复以及最近的纳米技术中的一系列应用。此外,可以使用可再生资源作为基材合成它们,从而有助于循环经济和可持续性。本文介绍了对细菌衍生的生物表面活性剂的一般综述,重点介绍了某些仍未被忽视的群体的潜力,以及这些多功能生物分子对循环生物经济学和纳米技术的最新趋势和贡献。
bacillus proteyticus mitwpub1是潜在的生物表面活性剂(BSS)的生产国,并且还发现该生物体是促进植物生长性状的生产国,例如氰化氢和吲哚乙酸(IAA),以及磷酸盐的溶液剂。据报道,BSS是两种类别的混合物,即糖脂和脂肽,如薄层色谱和傅立叶转换红外光谱分析所发现的那样。此外,通过液相色谱质谱法半靶向的代谢产物培养揭示了磷脂,脂蛋白,多胺,IAA衍生物和类胡萝卜素的存在。BS显示针对RolfSII的剂量依赖性拮抗活性;扫描电子显微镜在菌丝变形和减少的分支模式方面显示了BS对Rolfsii的影响。体外研究表明,蛋白水解的MITWPUB1及其生物表面活性剂在胸前的种子中的应用可增强种子发芽率。然而,基于木屑载体的生物取消用蛋白水解的mitwpub1及其BS显示出增加的生长参数。成为著名的BS生产商,能够控制植物病原体S. rolfsii的生长。
基于石油的产品与土壤,空气和水混合时可能会导致环境污染,这对人类可能是危险的。在当前的研究中,收集了汽油泵的汽油卸载区域的土壤样品,并使用Bushnell和Hass培养基通过富集技术从土壤中分离出9种汽油降解细菌的分离株。孤立的细菌可降解高达5%汽油,并且在在存在汽油的情况下评估其细胞质量后,选择了最好的降解剂。使用228 nm处的UV-VIS双束光谱仪比较不同孵育间隔后的汽油降解百分比。发现,在孵化的第15天到第15天,这两种细菌-Pseudomonas铜绿和burkholderia cepacia分别降解了汽油94.96%和94.74%。降解百分比逐渐下降到第20天。还筛选了两种细菌,以通过溶血生产生物表面活性剂。发现两种细菌都可以产生生物表面活性剂,它们是有效的汽油降解剂。
唯一具有两种天然生物活性剂NCT&NFT的饮食纤维。临床前研究表明,这些生物活性剂表现出支持肠衬并保持健康的肠道屏障功能的希望。**充当益生元*,支持微生物组的生长**适合功能性食品,饮料和补充剂应用,包括营养饮料,谷物,酒吧,格兰诺拉麦片等。
光学活性材料中的可调发射是从光电子到生物医学的广泛应用的理想特征。1–4由于其结构和电子适当,P-偶联的发色团是用于制备光学特性功能材料的理想基础。5,6通过利用P-曲面之间的超分子相互作用,分子排列和骨料形态可以精确地以微观量表进行控制。7然而,在发射色团的堆叠结构中经常观察到荧光的剧烈淬火,从而限制了光学性能。有机构件的正确分子设计为制备发光组件提供了有效的策略。最近,这种现象通常被称为聚集诱导的发射(AIE),但已知更长的时间。8,9在这些情况下,发射是由于非辐射停用途径的抑制而导致的,该途径通过骨架状态的分子内旋转或振动模式的限制,其二苯苯基甲基(TPE)是原型典型的例子。10这些发射材料的光学特性使它们有趣
肺表面活性物质是由磷脂和表面活性蛋白(例如SP-B和SP-C)组成的复合体,它们通过降低表面张力(ST)和防止肺泡塌陷,对维持呼吸系统功能至关重要。我们的研究引入了五种合成的SP-B肽和一种SP-C肽,从而合成了CHAsurf候选物(CHAsurf-1至CHAsurf-5)以供评估。我们采用改进的Wilhelmy平衡测试来评估表面活性剂的表面张力特性,测量铺展速率、表面吸附量和ST面积图,以全面评估其性能。动物实验在新西兰白兔身上进行,以测试CHAsurf-4B的功效。CHAsurf-4B因其经济可行性和良好的ST降低性能而被选中,与Curosurf®相当。研究证实,CHAsurf-4中较高剂量的SP-B与ST降低效果的改善相关。然而,由于成本限制,最终选择CHAsurf-4B进行体内评估。动物模型显示,CHAsurf-4B 可以修复肺泡结构并改善肺弹性,类似于 Curosurf®。我们的研究强调了半胱氨酸残基和二硫键对合成 SP-B 类似物结构完整性和功能的重要性,为未来呼吸系统疾病的表面活性剂治疗奠定了基础。本研究结果支持 CHAsurf-4B 作为治疗药物的潜力,值得进一步研究以巩固其在临床应用中的作用。
18. Manali ED、Kannengiesser C、Borie R、Ba I、Bouros D、Markopoulou A、Antoniou K、Kolilekas L、Papaioannou AI、Tzilas V、Tzouvelekis A、Daniil Z、Fouka E、Papakosta D、Xyfteri A、Karakatsani A、Loukides S、Korbila、Igosti AK、Konogo、Steusti、AK P、Papanikolaou IC、Bazaka C、Haritou A、Vassilakopoulos T、Maniati M、Kagouridis K、Markozannes E、Bouros E 等。遗传性特发性肺纤维化的基因型-表型关系:希腊国家队列研究。呼吸。他们。冻结。胸腔。这。 2022; 101:531–543。
背景洗涤剂和表面活性剂是一种有助于改善健康和卫生状况的化学品,这得益于它们的清洁性能。但是,它们可能对健康和环境造成风险。洗涤剂行业占欧盟化学工业产值的 4.2%。法国、德国、意大利、波兰和西班牙占欧洲产量的 85%。洗涤剂法规(法规 (EC) No 648/2004)制定了实现洗涤剂和表面活性剂在内部市场自由流动的规则,同时保护环境和人类健康。它制定了洗涤剂安全使用的规则,例如标签(包括香味过敏原)以及生产商必须向成员国主管当局和医务人员提供的信息。它还包括限制其环境影响的条款(生物降解性要求以及对其磷酸盐和其他磷化合物含量的限制)。