摘要:叠加磁场影响增材制造金属部件的微观结构和力学性能。本文采用 0.2 T 静态磁场下的定向能量沉积技术制备了 Inconel 718 高温合金样品。提出了磁流体动力学一维模型来估算熔池内的流体流动。根据理论预测,施加磁场会使流体流量略有减少。结果表明,糊状区内估计的热电磁对流对亚晶粒尺寸的变化影响可以忽略不计,但足以减少难以溶解的富 Nb 相,从而将平均极限伸长率从 23% 提高到 27%。所得结果证实,外部静态磁场可以改变和提高增材制造材料的力学性能。
Pall UltiKleen STG 过滤器专为非灰化聚合物剥离应用中的有机剥离剂过滤而设计,其中大凝胶数量较多。这些凝胶体积较大,会迅速堵塞传统的膜过滤器,导致过滤器寿命缩短和工艺停机。UltiKleen STG 过滤器采用精心设计的多层介质结构,将高凝胶保留能力层与优化的褶皱设计相结合,以保持连续的流体流动。结果是卓越的凝胶去除效果和较长的过滤器寿命,从而延长了工艺操作时间。
• 为 RAFTI 抓钩装置提供软、硬捕获能力 • 可用于柔性和不柔性航天器结构环境 • 实现 RAFTI 阀芯(OF 开发的任何类型)的接合 • 实现双向流体流动 • 提供 0 级未配对抑制 • 与 RAFTI 配对时提供 2 级落水抑制 • 在“捕获框”内执行软捕获(错位和位移包络线、相对速度包络线) • 执行 RAFTI 和主动阀芯的硬捕获和对准 • MEOP = 300 Bar • 捕获框值:20-100 mm xyz、10 度 xyz、0.01 m/s xyz • 夹紧力 = 1kN • 对接后最大接口负载 = TBC N • 流量 = 0.5 Bar dP,最大 10g/s 水
教师主页链接 研究领域 AR Harikrishnan 博士 传热和流体流动、液滴蒸发、液滴撞击动力学、润湿和界面物理、胶体和复杂流体、微纳米级热流体 Abhijeet K. Digalwar 博士 世界级制造、可持续制造、绿色制造、精益制造、机床工程、运营管理、全面质量管理、绩效测量系统 Amit R. Singh 博士 固体和结构力学、流体动力学、非线性弹性、有限元法、计算接触力学、软壳力学、定向粒子系统 Aneesh AM 博士 微型通道中流体流动和传热的计算和实验研究、多相流和流体结构相互作用的计算研究 Arun Kr. 博士Jalan 故障诊断、机械状态监测、声学、摩擦学 Prof. Bijay K. Rout 机械系统的设计优化、动态系统的建模和仿真、实验设计技术的应用和稳健设计的进化算法。 C. Ranganayakulu 教授 热/传热:紧凑型热交换器、沸腾和冷凝、设计和产品开发 Divyansh Patel 博士 使用电化学微加工对生物医学植入物进行微纹理化,先进(非传统)加工工艺 Faizan M. Rashid 博士 复合结构、生物力学、材料力学、疲劳、冲击力学、材料建模和材料特性 Gaurav Watts 博士 计算结构力学 Girish Kant 博士 制造 Jitendra S. Rathore 博士 力学、纳米技术 KS Sangwan 教授 可持续制造、精益制造、综合和绿色可持续供应链管理、单元制造系统、机械加工的资源效率、制造系统设计、网络物理生产系统/工业 4.0、人工智能技术在制造系统设计中的应用 Mani Sankar Dasgupta 教授
热处理和淬火是一项复杂的工作。零件的配置是无穷无尽的,可用于热处理的炉子类型也是如此(图 1)。仅淬火过程中的众多变量就决定了零件满足变形要求的能力(图 2)。热处理是一个持续平衡的过程。平衡材料实现性能的能力,同时控制变形非常重要。由于热处理过程的复杂性,很难理解流体流动和零件对零件变形和性能的相互作用。通常,只有通过经验才能获得理解,而经验来自于犯错并从错误中吸取教训。然而,劳动力正在老龄化,对“反复试验”的容忍度较低。重点在于“第一次就把事情做好”。不幸的是,很少有设计规则规定零件在特定熔炉中的放置方式。
ME 522 高级流体力学 3 学分 流体力学研究生课程。根据质量、动量和能量传递的共同原理回顾流体流动现象。介绍工业和环境环境中流体流动的基本概念和分析方法。纳维尔-斯托克斯方程;粘性和非粘性流;层流和湍流;边界层;阻力;热对流。 先决条件:本科热力学、流体力学和传热学的全部课程。课程相当于 ME 520。已经修完 ME 520 且成绩为 B 或更高的学生将不会获得 ME 522 的额外学分。(OC)。限制:如果班级是,则不能注册如果级别是 Rackham 或研究生或博士,则可以注册或者如果专业是机械工程-NCFD、生物工程、机械工程,则可以注册
1 简介 讨论风洞中测试室的文献有限。主要原因是由于测试室的静态对称性,设计简单,要么使用圆形、正方形或矩形横截面,也与已经从收缩室流向测试室的流体有关 [1]。与空气动力学测试、湍流研究或风工程中的文章相关,它表明风洞在提供数据以分析样品与流体流动之间的相互作用方面发挥着重要作用。Manan 等人测试了混合动力汽车模型,而 Clarke 等人在设计阶段测试了自动驾驶汽车的空气动力学特性 [2],[3]。其他相关研究包括测试颗粒的液压输送 [4],以及研究磁场对电导率的相互作用,例如液态金属(汞、镓、钠等),它们受霍尔效应和物质因热量而产生的熵特性的影响 [4]。在大多数风洞设计中,风洞建设的重点是如何设计收缩