本演示文稿包含 1995 年美国私人证券诉讼改革法所定义的 Intellia Therapeutics, Inc.(“Intellia”、“我们”或“我们的”)的“前瞻性陈述”。这些前瞻性陈述包括但不限于关于 Intellia 对以下方面的信念和期望的明示或暗示的陈述:我们临床项目的安全性、有效性和进步性,包括我们通过单剂量开发潜在治愈性体内疗法的能力;生成数据以启动临床试验的能力以及 CTA 和 IND 提交的时间;其 CRISPR/Cas9 技术和相关技术的进步、扩展和加速,以推进和开发更多候选药物和治疗方法;展示我们平台的模块化并在任何未来研究(包括人体临床试验)中复制或应用临床前和临床研究中取得的成果的能力;我们的平台实现快速且可重复的临床应用的能力;以及优化我们的合作对我们开发项目的影响的能力,
汽车和航空航天领域以及最近的增材制造 (AM) 越来越多地使用 X 射线计算机断层扫描 (XCT) 作为一种无损技术 (NDT) 来检查现代部件的内部和外部特征(几何形状、表面形貌和缺陷),在某些情况下,这些特征是无法使用传统测量技术进行评估的 [1-3]。XCT 仪器在多个角度位置捕获物体/部件的一系列射线投影,随后用于重建该物体的三维 (3D) 表示,如图 1-A 所示。与物体相关的 3D 表示由一组体素组成,这些体素的灰度值与对应于背景的体素的强度不同。在图 1-A 所示的示例中,深灰色体素代表背景,浅灰色体素代表物体(或前景)。几何测量值来自物体的表面,而表面必须从物体的 3D 表示中建立。从初始投影到最终的几何评估,影响测量结果的因素有很多,例如仪器对准、焦点稳定性、用户定义的扫描参数、材料、几何形状、光子-材料相互作用、部件方向、重建和表面确定 (SD) 算法 [4,5]。SD 在 XCT 测量模型中起着至关重要的作用,因为它会影响其他因素对几何测量的影响,即它们相关的灵敏度系数 [6]。SD 算法的作用是
数字化,开放性,实时数据可用性和协作是认为可以定义第四次工业革命工业4.0的一些技术趋势。物联网(IoT)和增强的网络物理系统将这种新工业范式的数字和物理领域团结在一起。全球经济和市场有望受到这种行业转型的影响,该行业变革预计将增强制造过程并提高生产力。该研究旨在概述2011年构思的工业4.0组成部分,并详细描述了这些概念的历史发展,强调了数字供应链和逻辑4.0概念的特征,基本特征以及含义4.0,这些概念是行业4.0影响的结果。短语“行业4.0”涵盖了广泛的创新技术,包括但不限于:网络物理系统,机器人,物联网,云计算,增强现实,人工智能,数据安全,大数据和服务。在以前的三项工业革命带来了巨大的效率增长以及社会和经济转变之后,工业4.0的想法代表了世界第四次工业革命。在工业4.0下,生产链中的所有内容,包括供应商,运营商和产品,都通过数字连接。
伏消纳的主要手段,在电力网中合理配置能源储存 的位置和容量,可以改变负荷和风力发电的时空特 性,进而改变电网的传输性能,解决输电线路阻塞 和过负荷的问题。文献 [7] 考虑储能和可再生能源 之间的互补性,以综合成本最低为目标构建输储规 划模型;文献 [8] 引入了一种自适应最小 - 最大 - 最小 成本模型,以找到新线路和储能的鲁棒最佳扩建规 划;文献 [9] 则从储能带来的效益出发,将商业储能 的选址、定容问题和线路扩展规划集成起来,构建 输储规划模型;文献 [10] 针对输电线路和储能系统 的综合规划,提出了一种连续时间混合随机 / 鲁棒优 化方法;文献 [11] 针对输电工程的扩建落后于风力 装机容量的发展,提出了一种考虑低压侧直供潜力 的协调规划方法;文献 [12] 总结了能源互联网的基 本概念和特点,对其基本结构框架进行了详细分 析,通过高通滤波的控制策略来平抑新能源功率的 波动;文献 [13] 提出依据风电预测误差,利用储能的 快速调节能力,提出考虑预测误差的储能控制策 略,从而进行平抑风电功率波动;文献 [14] 研究了多 区域电力系统储能优化配置问题,采用迭代算法将 原问题进行分解为多个子系统储能配置问题;文献 [15] 综合考虑多种经济因素,为追求最低经济成本, 建立一种分阶段的输储规划模型。需要指出的是, 输电网络约束的引入增加了输储规划模型的求解 难度,并且现有的输储协同规划研究主要集中于储 能和线路的扩建,考虑风光互补的输储联合规划的 研究很少。 面对大规模风光并网的输电网规划问题,本文 首先综合考虑风光互补特性和储能的运行特性,进 行输电线路规划,使储能成本、年弃风弃光成本和 输电线路成本最小化,其次提出 3 个评价指标来评
基于 mRNA 的疗法不同于小分子和其他生物制剂,它们代表着重大的分析挑战。为了在竞争激烈的市场中竞争并符合监管标准,需要对临床前/临床测试和批次放行进行 mRNA 表征。更快、更可靠的结果需要创新的解决方案来应对这些分析挑战。核酸浓度测定是通过测定 260 nm 分析波长下的紫外 (UV) 吸光度来测量的。这些吸光度测量允许科学家根据已知的 RNA 消光系数来测量核酸浓度。它们在 260 nm 处的最大吸光度峰的光谱特征与核酸浓度成正比。这种紫外核酸定量方法的优点是简单、直接,并且只需要少量样品即可进行测量。然而,分析实验室遇到的一个挑战是其特异性的局限性,因为吸收相似波长的基质成分会导致随后的核酸浓度测定不准确。我们观察到,当前传统的基于比色皿的 UV 解决方案中使用 1 cm 比色皿和/或较小固定光程长度的标准固定光程长度 UV 仍然无法解决给定测量的质量问题,并且需要数小时的调查时间。使用稀释因子(这会增加制备时间和变异性)和固定光程长度测量来确定溶液中 UV 发色团的浓度,并不能提供一种可在公司或流程内平台化的易于转移且可靠的方法。如今,研究人员可以在存在化学和核酸杂质(尤其是 DNA 和 dsRNA)的情况下选择性地量化核酸吸光度。分析软件使用全光谱数据和高级算法来识别核酸杂质并提供校正的核酸浓度。
†EUA免责声明:Vitros-SARS COV-2抗原测定,Vitros抗SARS-COV-2总N和VITROS抗SARS-COV-2 IgG-2 IgG量子抗体测试尚未得到美国食品和药物管理(FDA)的批准。他们已由FDA根据紧急使用授权(EUA)授权,并且测试仅限于1988年临床实验室改进修正案(CLIA)的实验室,美国法典第42卷。§263A,进行中等或高复杂性测试。VITROS抗原试验仅用于检测SARS-COV-2的蛋白质,而不是用于任何其他病毒或病原体。VITROS抗体测试仅用于检测SARS-COV-2的总或IgG抗体,而不是用于任何其他病毒或病原体,因此不应将结果用作诊断的唯一基础。这些测试仅在声明的持续时间内被授权,即存在情况是合理的,证明了授权在第564(b)(1)条的第21条(美国法案)第564(b)(1)条所述的COVID-19的体外诊断测试中进行检测和/或诊断。§360BBB-3(b)(1),除非授权更早终止或撤销。Vitros-SARS COV-2抗原测定,Vitros抗SARS-COV-2总N和Vitros抗SARS-COV-2 IgG量仅在美国可用
人类胎盘从妊娠到妊娠5周。第一部分:我们对植入后形成性胎盘发育有何了解?J L James,A M Carter,L W Chamley,胎盘。33(5):327-34,2012 https://doi.org/10.1016/j.placenta.2012.01.020 fige1
引用本文: 于乃功, 谢秋生, 李洪政.基于点云处理的仿人机器人楼梯障碍物识别与剔除方法[J].北科大:工程科学学报 , 2025, 47(2): 339-350. doi: 10.13374/j.issn2095-9389.2024.05.10.001 YU Naigong, XIE Qiusheng, LI Hongzheng.Obstacle recognition and elimination method for humanoid robots based on point cloud processing[J].Chinese Journal of Engineering , 2025, 47(2): 339-350. doi: 10.13374/j.issn2095-9389.2024.05.10.001
显示 R 1 = 75Ω R a = 50Ω 的情况。 R 2・R 3:耦合电路的电阻 E:SG 输出电压 dBμ V 测试设备的输入信号电平:E-6 [dBμ V]