摘要:近几十年来,许多不同的政府和非政府组织将测谎用于各种目的,包括确保犯罪供词的真实性。因此,这种诊断是用测谎仪来评估的。然而,测谎仪有局限性,需要更可靠。这项研究介绍了一种使用脑电图 (EEG) 信号检测谎言的新模型。为实现这一目标,我们创建了一个包含 20 名研究参与者的 EEG 数据库。本研究还使用六层图卷积网络和 2 型模糊 (TF-2) 集进行特征选择/提取和自动分类。分类结果表明,所提出的深度模型可以有效区分真话和谎言。因此,即使在嘈杂的环境中 (SNR = 0 dB),分类准确率仍保持在 90% 以上。所提出的策略优于当前的研究和算法。其卓越的性能使其适用于广泛的实际应用。
单眼3D对象检测通常采用直接或静脉标签的监督。最近,蒸馏监督将空间知识从激光雷达或立体声教师网络转移到单眼探测器,但仍保留域间隙。To mitigate this issue and pursue ade- quate label manipulation, we exploit F oreground D epth map for feature-supervised monocular 3D object detection named FD3D , which develops the high-quality instructive interme- diate features to conduct desirable auxiliary feature supervi- sion with only the original image and annotation foreground object-wise depth map (AFOD) as input.此外,我们基于图像功能和预处理的AFOD之间的足够相互关系来建立我们的具有启发性的功能生成网络,以构建具有启发性的空间特征,在此中,AFOD仅将注意力集中在前景上,以在检测任务中获得更清晰的指导。更重要的是,我们应用了从像素和分布级别的辅助功能监督,以实现全面的空间知识指导。广泛的实验表明,我们的方法在Kitti和Nuscenes数据集上都实现了最先进的性能,没有外部数据,也没有额外的推理计算成本。我们还进行实验以揭示设计的有效性。
此预印本的版权所有者此版本于 2024 年 2 月 28 日发布。;https://doi.org/10.1101/2024.02.26.582022 doi:bioRxiv preprint
• EEL4598/5718 数据计算机通信 (3) SS,秋季 • EEL4516/5544 线性系统中的噪声 (3) 秋季 • EEL4599 无线和移动网络 (3) 春季 • EEL6591 无线网络 (3) • EEL6532 信息理论 (3) • EEL6533 统计理论 (3) • EEL6535 数字通信 (3) • EEL6507 队列理论 (3) • EEL6509 无线通信 (3) • EEL6550 误差校正编码 (3)
自动疼痛评估可以定义为一组用于识别疼痛状态的计算机辅助技术。可靠有效的疼痛评估方法对于客观和持续监测无法口头交流的人的疼痛至关重要。在这项研究中,我们提出了一种通过分析面部表情来识别疼痛的新方法。更具体地说,我们评估了图神经网络 (GNN) 架构的有效性,该架构利用了一组自动跟踪受试者面部的基准点的固有图结构。在公开可用的数据集 BioVid 上进行的实验表明,与基线模型相比,所提出的方法在动作疼痛方面达到了更高的准确度,同时在自发性疼痛方面也超越了最先进的方法。
图像挖掘是一种从庞大的图像数据集中搜索和发现有价值的信息和知识的方法。图像挖掘基于数据挖掘、数字图像处理、机器学习、图像检索和人工智能。图像挖掘处理隐藏信息提取、图像数据关联和图像中不清晰可见的附加模式。选择适合图像挖掘过程的适当对象或图像特征是程序员面临的主要挑战。该过程包括在更短的时间内找出最有效的路线并节省用户的工作量。本文的主要目标是设计和实现具有更高性能的图像分类系统,其中使用 CIFAR-10 数据集来训练和测试使用 CNN 的分类模型。卷积神经网络是值得信赖的,它可以产生高质量的结果。使用深度卷积神经网络 (DCNN) 获得了 98% 的高准确率。