广泛应用于自主驾驶中的基于深度学习的单眼深度估计(MDE)很容易受到对抗性攻击的影响。先前针对MDE模型的物理攻击依赖于2D广泛的补丁,因此它们仅影响MDE地图中的一个小型局部区域,但在各种观点下都失败了。为了解决这些限制,我们提出了3D深度傻瓜(3d 2傻瓜),这是对MDE模型的第一个基于3D纹理的对抗性攻击。3d 2傻瓜被专门优化,以生成3D对抗纹理对型号的车辆类型,并在恶劣天气条件(例如雨水和雾)中具有改善的鲁棒性。实验结果验证了我们3d 2傻瓜在各种情况下的出色性能,包括车辆,MDE Mod-els,天气状况和观点。现实世界中使用打印3D纹理的实验实验进一步表明,我们的3d 2傻瓜可能会导致超过10米的MDE误差。该代码可在https://github.com/gandolfczjh/3d2fool上找到。
随着手机摄像头的质量开始在现代智能手机中发挥关键作用,人们越来越关注用于改善手机照片各个感知方面的 ISP 算法。在这次移动 AI 挑战赛中,目标是开发一个基于深度学习的端到端图像信号处理 (ISP) 管道,该管道可以取代传统的手工制作的 ISP,并在智能手机 NPU 上实现近乎实时的性能。为此,参赛者获得了一个新颖的学习到的 ISP 数据集,其中包含使用索尼 IMX586 Quad Bayer 移动传感器和专业的 102 兆像素中画幅相机拍摄的 RAW-RGB 图像对。所有模型的运行时间都在联发科 Dimensity 1000+ 平台上进行评估,该平台配备专用的 AI 处理单元,能够加速浮点和量化神经网络。所提出的解决方案与上述 NPU 完全兼容,能够在 60-100 毫秒内处理全高清照片,同时实现高保真效果。本文提供了本次挑战赛中开发的所有模型的详细描述。
摘要 — 目标:构建一个可以在单个受试者的小型 EEG 训练集上进行训练的 DL 模型提出了一个有趣的挑战,这项工作正试图解决这一挑战。具体来说,本研究试图避免长时间的 EEG 数据收集过程,并且不组合多个受试者的训练数据集,因为这会对分类性能产生不利影响,因为受试者之间的个体间差异很大。方法:使用大约 120 次 EEG 试验对定制的具有混合增强功能的卷积神经网络进行训练,每个模型仅针对一个受试者。结果:经过修改的具有混合增强功能的 ResNet18 和 DenseNet121 模型分别实现了 0.920(95% 置信区间:0.908,0.933)和 0.933(95% 置信区间:0.922,0.945)的分类准确率。结论:我们表明,尽管本研究使用的训练数据集有限,但与同一数据集上先前研究中的其他 DL 分类器相比,设计的分类器具有更高的分类性能。
抽象课程推荐系统可以通过利用用户交互数据来帮助学生识别合适或有吸引力的课程,这显示了用户和课程之间以前的参与。但是,现有课程推荐系统的普遍问题是它们倾向于优先考虑准确性而不是解释性。这些复杂模型的“黑框”性质提出了一个挑战:准确表征和建模用户的偏好,同时还提供明确的,具有预性和可解释的用户配置文件。为了解决这种限制,我们为课程推荐提出了一个新颖的知识实体感知模型,该模型称为KEAM,该模型基于知识图的详细信息支持明确的用户个人资料生成,以增强学生对建议背后的理由的理解。具体来说,我们利用知识图中编码的信息,通过更换隐藏单元来使用神经网络之间建立单位之间的连接。接下来,对模型进行了培训,可以捕获学生的偏好并创建用户配置文件,以提供可解释的建议。在两个现实世界的在线数据集上进行了全面的实验,以评估所提出的模型的有效性和解释。
Insilico Medicine 专有功能使各种行业都具备尖端潜力。计算靶标识别正在打破传统方法的范式。数字技术大大拓宽了可能发现的靶标范围,从而可以快速发现新靶标。用于药物或靶标比较的虚拟工具大大提高了各个阶段的药物发现效率,极大地影响了每个分子的资源分配。数字化前人类和人类靶标或药物验证的可能性开辟了广泛的分子分析,并显著降低了药物开发领域的成本并提供了风险管理选项。
背景:静息态功能性磁共振成像 fMRI (rs- fMRI) 已广泛用于研究精神疾病的大脑功能,从而深入了解大脑组织。然而,rs-fMRI 数据的高维性给数据分析带来了重大挑战。变分自动编码器 (VAE) 是一种神经网络,在提取静息态功能连接 (rsFC) 模式的低维潜在表示方面发挥了重要作用,从而解决了 rs-fMRI 数据的复杂非线性结构。尽管取得了这些进展,但解释这些潜在表示仍然是一个挑战。本文旨在通过开发可解释的 VAE 模型并使用 rs-fMRI 数据在自闭症谱系障碍 (ASD) 中测试其效用来解决这一差距。
本文探讨了深度学习在计算机视野领域的关键作用。计算机视觉是对启示机感知和理解视觉信息的研究,随着深度学习技术的出现,已经取得了重大进步。传统的计算机视觉方法在处理复杂的视觉任务时面临局限性,激发了对高级方法的需求。深度学习,由神经网络和卷积神经网络(CNN)提供支持,通过提供端到端的学习,功能表示和适应性来彻底改变计算机视觉。本文讨论了深度学习在计算机视觉中的各种应用,包括图像分类,对象检测,语义细分和视频分析。它还解决了深度学习的优势,例如其处理大规模数据集和概括的能力。但是,研究了挑战和局限性,包括对标记数据和计算要求的需求。本文通过强调最近的进步和未来的方向,例如转移学习,生成对抗网络(GAN)和注意机制,强调了在这个迅速发展的领域中正在进行的研发的重要性。总体而言,深度学习已成为计算机视觉中的关键工具,并有可能显着影响各种领域和应用。
轴突是一种较细的,类似电缆的投影,可以延长数十万,数百甚至数万som的直径的倍数。轴突主要将神经信号远离躯体,并将某些类型的信息带回到其中。许多神经元只有一个轴突,但是这种轴突可能(通常都会)在广泛的分支下,从而可以与许多目标细胞进行通信。从躯体出现的轴突部分称为轴突小丘。除了是解剖结构外,轴突小丘还具有最大的电压依赖性钠通道密度。这使其成为神经元和轴突的尖峰启动区的最容易激发部分。用电生理术语,它具有最负阈值的潜力。
通过将自然语言纳入附加指导来实现单眼深度估计的最新进展。尽管产生了令人印象深刻的结果,但语言先验的影响,尤其是在发生和鲁棒性方面,仍未得到探索。在此过程中,我们通过量化此之前的影响来解决这一差距,并引入方法以在各种环境中基准其有效性。我们生成“低级”句子,传达以对象为中心的三维空间关系,将它们纳入其他语言先验,并评估其对深度估计的下游影响。我们的关键发现是,当前语言引导的深度估计仅通过场景级别的描述和违反直觉的效果最佳地发挥作用。尽管利用了其他数据,但这些方法对于对抗性攻击并随着分配变化的增加而对性攻击和绩效下降并不强大。fi-nally,为了为未来的研究提供基础,我们识别出失败点,并提供见解以更好地理解这些缺点。使用语言进行深度估算的越来越多的方法,我们的发现突出了需要仔细考虑在现实世界中有效部署的机会和陷阱。1
深度神经网络是一种复杂的结构化系统,它以并行、分布式和上下文敏感的方式处理信息,而深度学习则是利用这些系统通过依赖经验的学习过程获得与智能相关的能力的努力。在人工智能领域,深度学习的工作通常旨在利用所有可用的工具和资源来创造和理解智能,而不考虑其生物学合理性。然而,深度学习的许多核心思想都从大脑和人类智能的特征中汲取灵感,我们认为这些受大脑启发的系统最能捕捉这些特征(Rumelhart、McClelland 和 PDP 研究小组,1986 年)。此外,深度学习研究中出现的想法可以帮助我们了解人类和动物的记忆和学习。因此,深度学习研究可以看作是研究人员之间相互交流的沃土,这些研究人员研究的相关问题对生物智能和机器智能都有影响。
