b'[2] C. Yan,X。Duanmu,L。Zeng,B。Liu,Z。歌曲,线粒体DNA:分布,突变和消除,细胞,8(2019)。[3] F. Liu,D.E。Sanin,X。Wang,肺癌中的线粒体DNA,实验医学与生物学进展,1038(2017)9-22。[4] J. Zhang,J。[5] P.P.Jia,M。Junaid,Y.B。 MA,F。Ahmad,Y.F。 jia,W.G。 li,D.S。 pei,人类DNA2(HDNA2)作为癌症和其他疾病的潜在靶点的作用:系统评价,DNA修复(AMST),59(2017)9-19。 [6] A. D \ XC3 \ Xadaz-Talavera,C。Montero-Conde,L.J。 Leandro-Garc \ XC3 \ Xada,M。Robledo,Primpol:DNA复制酶的突破和潜在的癌症治疗新靶标,生物分子,12(2022)。 [7] A.O. Giacomelli,X。Yang,R.E。 lintner,J.M. McFarland,M。Duby,J。Kim,T.P。 D.Y. Howard Takeda,S.H。 ly,E。Kim,H.S。 Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Jia,M。Junaid,Y.B。MA,F。Ahmad,Y.F。 jia,W.G。 li,D.S。 pei,人类DNA2(HDNA2)作为癌症和其他疾病的潜在靶点的作用:系统评价,DNA修复(AMST),59(2017)9-19。 [6] A. D \ XC3 \ Xadaz-Talavera,C。Montero-Conde,L.J。 Leandro-Garc \ XC3 \ Xada,M。Robledo,Primpol:DNA复制酶的突破和潜在的癌症治疗新靶标,生物分子,12(2022)。 [7] A.O. Giacomelli,X。Yang,R.E。 lintner,J.M. McFarland,M。Duby,J。Kim,T.P。 D.Y. Howard Takeda,S.H。 ly,E。Kim,H.S。 Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。MA,F。Ahmad,Y.F。jia,W.G。li,D.S。pei,人类DNA2(HDNA2)作为癌症和其他疾病的潜在靶点的作用:系统评价,DNA修复(AMST),59(2017)9-19。[6] A. D \ XC3 \ Xadaz-Talavera,C。Montero-Conde,L.J。Leandro-Garc \ XC3 \ Xada,M。Robledo,Primpol:DNA复制酶的突破和潜在的癌症治疗新靶标,生物分子,12(2022)。[7] A.O.Giacomelli,X。Yang,R.E。 lintner,J.M. McFarland,M。Duby,J。Kim,T.P。 D.Y. Howard Takeda,S.H。 ly,E。Kim,H.S。 Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Giacomelli,X。Yang,R.E。lintner,J.M.McFarland,M。Duby,J。Kim,T.P。 D.Y. Howard Takeda,S.H。 ly,E。Kim,H.S。 Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。McFarland,M。Duby,J。Kim,T.P。D.Y. Howard Takeda,S.H。 ly,E。Kim,H.S。 Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。D.Y. HowardTakeda,S.H。 ly,E。Kim,H.S。 Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Takeda,S.H。ly,E。Kim,H.S。Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。 Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Gannon,B。Hurhula,T。Sharpe,A。Goodale,B。Fritchman,S。Seelman,F。Vazquez,A。Tsherniak,A.J。Aguirre,J.G。 Doench,F。Piccioni,C.W.M。 Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Aguirre,J.G。Doench,F。Piccioni,C.W.M。Roberts,M。Meyerson,G。Getz,C.M。 Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Roberts,M。Meyerson,G。Getz,C.M。Johannessen,D.E。 根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。 [8] G.A. Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Johannessen,D.E。根,W.C。 Hahn,突变过程塑造了人类癌症中TP53突变的景观,NAT Genet,50(2018)1381-1387。[8] G.A.Fontana,H.L。 [9] C.Y. dai,C.C。 ng,G.C.C。 Hung,I。Kirmes,L.A。Hughes,Y。Fontana,H.L。[9] C.Y.dai,C.C。ng,G.C.C。Hung,I。Kirmes,L.A。Hughes,Y。gahlon,线粒体DNA缺失形成的复制和修复机制,核酸res,48(2020)11244-11258。du,C.A。Brosnan,A。Ahier,A。Hahn,C.M。 Haynes,O。Rackham,A。Filipovska,S。Zuryn,ATFS-1,通过促进转录修复,自然细胞生物学,25(2023)1111-1120来抵消线粒体DNA损伤。 [10] L. Ou,H。Liu,C。Peng,Y. [11] H. Liu,J。Weng,C.L.H。 Huang,A.P。 杰克逊,癌症的电压门控钠通道,生物标志物研究,12(2024)70。 [12] H. Liu,A。Dong,A.M。 Rasteh,P。Wang,J。Weng,乳腺癌中新型T细胞CD8 +标记的鉴定,Scientific Reports,14(2024)19142。 [13] H. Liu,T。Tang,基于MAPK信号途径的胶质瘤亚型,机器学习风险模型和关键集线器蛋白识别,科学报告,13(2023)19055。。 [14] H. Liu,T。Tang,《泛滥成灾与基因集的泛癌遗传分析》,癌症遗传学,278-279(2023)91-103。 [15] H. Liu,T。Tang,《胶质瘤IGFBP的生物信息学研究》,涉及其诊断,预后和治疗预测值,AM J Transl Res,15(2023)2140-2155。 [16] H. Liu,T。Tang,《泛滥成灾基因套件的泛 - 癌遗传分析》,Biorxiv,(2023),2023.2002。 2025.529997。 [17] H. Liu,库糖凋亡在肾脏肾透明细胞癌中的表达和潜在免疫受累,癌症遗传学,274-275(2023)21-25。Brosnan,A。Ahier,A。Hahn,C.M。Haynes,O。Rackham,A。Filipovska,S。Zuryn,ATFS-1,通过促进转录修复,自然细胞生物学,25(2023)1111-1120来抵消线粒体DNA损伤。[10] L. Ou,H。Liu,C。Peng,Y.[11] H. Liu,J。Weng,C.L.H。Huang,A.P。 杰克逊,癌症的电压门控钠通道,生物标志物研究,12(2024)70。 [12] H. Liu,A。Dong,A.M。 Rasteh,P。Wang,J。Weng,乳腺癌中新型T细胞CD8 +标记的鉴定,Scientific Reports,14(2024)19142。 [13] H. Liu,T。Tang,基于MAPK信号途径的胶质瘤亚型,机器学习风险模型和关键集线器蛋白识别,科学报告,13(2023)19055。。 [14] H. Liu,T。Tang,《泛滥成灾与基因集的泛癌遗传分析》,癌症遗传学,278-279(2023)91-103。 [15] H. Liu,T。Tang,《胶质瘤IGFBP的生物信息学研究》,涉及其诊断,预后和治疗预测值,AM J Transl Res,15(2023)2140-2155。 [16] H. Liu,T。Tang,《泛滥成灾基因套件的泛 - 癌遗传分析》,Biorxiv,(2023),2023.2002。 2025.529997。 [17] H. Liu,库糖凋亡在肾脏肾透明细胞癌中的表达和潜在免疫受累,癌症遗传学,274-275(2023)21-25。Huang,A.P。杰克逊,癌症的电压门控钠通道,生物标志物研究,12(2024)70。[12] H. Liu,A。Dong,A.M。 Rasteh,P。Wang,J。Weng,乳腺癌中新型T细胞CD8 +标记的鉴定,Scientific Reports,14(2024)19142。[13] H. Liu,T。Tang,基于MAPK信号途径的胶质瘤亚型,机器学习风险模型和关键集线器蛋白识别,科学报告,13(2023)19055。[14] H. Liu,T。Tang,《泛滥成灾与基因集的泛癌遗传分析》,癌症遗传学,278-279(2023)91-103。[15] H. Liu,T。Tang,《胶质瘤IGFBP的生物信息学研究》,涉及其诊断,预后和治疗预测值,AM J Transl Res,15(2023)2140-2155。[16] H. Liu,T。Tang,《泛滥成灾基因套件的泛 - 癌遗传分析》,Biorxiv,(2023),2023.2002。2025.529997。[17] H. Liu,库糖凋亡在肾脏肾透明细胞癌中的表达和潜在免疫受累,癌症遗传学,274-275(2023)21-25。[18] L. Hengrui,《中药用于癌症治疗中使用的有毒药物的例子》,J Tradit Chin Med,43(2023)209-210。[19] H. Liu,J。Weng,《 Rad51的Pan-Cancer生物信息学分析》,涉及诊断,预后和治疗预测的值,肿瘤学的前沿,12(2022)。[20] H. Liu,J。Weng,胶质瘤中细胞周期蛋白依赖性激酶2(CDK2)的全面生物信息学分析,Gene,(2022)146325。[21] H. Liu,T。Tang,Pan-Cancer的库糖胞化和铜代谢相关的基因集,肿瘤学的边界,12(2022)952290。[22] H. Liu,Y。Li,Cornichon家族AMPA受体辅助蛋白4(CNIH4)在头部和颈部鳞状细胞癌中的潜在作用,癌症生物标志物:疾病标志物A部分(2022)。[23] H. Liu,J.P。Dilger,J。Lin,pan-Cancer-Biodorminicals-Informinical-Informicals Trpm7的文献综述,Pharmacol Ther(2022)108302。[24] H. Liu,cuproptosis Gene Set的Pan-Canter概况,《美国癌症研究杂志》,第12期(2022)4074-4081。[25] Y. Liu,H。Liu,氨基酰基TRNA合成酶复合物的临床能力相互作用多功能蛋白1(AIMP1),用于头颈鳞状细胞癌,癌症生物标志物:疾病标志物A节A节(20222)。[26] Y. Li,H。Liu,Y。Han,在头部和颈部鳞状细胞癌中,Cornichon家族AMPA受体辅助蛋白4(CNIH4)的潜在作用,研究方形(2021)。 '
这对于FSP或“本金”与可靠的代理或代理网络互动并可以帮助他们管理运营风险,例如使其对欺诈责任或与客户保护相关的问题至关重要。例如,移动货币代理通常是移动货币提供商(MMP)的现金和现金(CICO)点,辅助公用事业付款和国内汇款,而其他交易,而银行通讯员(BC)代理可以代表银行接受存款。
多发性硬化症(MS)是中枢神经系统(CNS)的多因素自身免疫性疾病。它的特征是免疫系统的激活增强,随之而来的炎症,脱髓鞘和神经变性以及诸如运动,感觉,认知以及自主神经功能障碍之类的后果。虽然一系列免疫调节药物在减轻病理学和症状方面表现出了某些效率,但目前可用的治疗剂都没有再生受损的中枢神经系统来恢复功能。有新兴的证据表明白细胞和白三烯受体参与了MS病理学各个方面,包括神经蛋白流量和DE/Remereliation。此外,白细胞受体拮抗剂,例如哮喘药物蒙特鲁卡斯特(Montelukast)减少炎症并促进再生/再生。的确,Montelukast在MS动物模型中已成功测试,最近的回顾性病例对照研究表明,Montelukast治疗可减少MS患者的复发。因此,我们提出Montelukast作为标准免疫调节药物的治疗辅助药,以减少病理并促进结构和功能恢复。在这里,我们回顾了有关MS的当前知识,其病理学以及白细胞受体拮抗剂作为MS的治疗剂的潜力。
如果有足够的潜在参与者,格林牛顿将开发和发布向国家电网和合格公司提出的提议销售要求,该公司解决了社区网络网络的地热系统的开发和运营的所有方面在系统的每个房屋中绑定的过程和时间表,公司的义务以及计划长期维护和操作系统的义务和计划。
目的:本研究旨在阐明丝氨酸苏氨酸激酶 11 (STK11) 在非小细胞肺癌 (NSCLC) 中的作用,特别是其在 KRAS 突变 NSCLC 对抗 PD-1 单克隆抗体治疗的耐药性中的作用。该研究还探讨了 STK11 改变对预后、蛋白质相互作用、免疫细胞参与和药物敏感性的影响。方法:进行全面的生物信息学分析以评估各种 NSCLC 亚型中的 STK11 表达水平和突变谱。该研究将这些发现与临床病理特征相关联,并评估了免疫细胞浸润、免疫微环境和潜在的治疗选择。还进行了分子对接分析以研究与各种抑制剂的相互作用。结果:结果显示整个 NSCLC 中的 STK11 表达升高,突变率为 14%,并且与良好的预后相关。发现 STK11 表达与免疫细胞浸润和以免疫活性较低为特征的冷免疫微环境相关。 Nutlin-3a (-) 被确定为 STK11 突变 NSCLC 病例的潜在治疗选择。分子对接分析提供了与各种抑制剂相互作用的见解,为个性化治疗策略提供了前景。结论:本研究强调 STK11 是 NSCLC 的双重预后和治疗生物标志物。研究结果强调了 STK11 与免疫活动之间的复杂相互作用,为 NSCLC 的个性化治疗方法提供了创新途径。关键词:非小细胞肺癌、STK11、免疫细胞浸润、预后生物标志物、治疗生物标志物、免疫疗法耐药性
每年,全球有成千上万的人因癌症发病率和死亡率上升而受苦。此外,癌症患者的治疗选择也很昂贵,而且抗癌药物往往疗效较低且副作用较大。DNA拓扑异构酶可以作为已确定的癌症靶点,因为人类拓扑异构酶(Top1)在有丝分裂后阶段调节基因转录,并在复制和修复过程中在DNA超螺旋中起关键作用。因此,在药物治疗过程中,阻断Top1可能对抑制癌细胞增殖至关重要。这里,通过虚拟筛选对中药化合物进行了筛选。中药库的虚拟筛选过程使得能够根据结合能(-7.1至-9.3Kcal/mol)将化合物列表缩小到29种化合物,而在Lipniski过滤之后,使用MM/PB(GB)SA过滤来筛选剩下的22种化合物,并根据结合自由能选出前四种化合物。这里,这四种化合物; CID-65752(T2972:吴茱萸次碱)、CID-5271805(T4S2126:银杏黄素)、CID-9817839(T2S2335:脱氢吴茱萸碱)和CID-51106(T3054:达伍里索林)在分子对接过程中的结合能分别为-8.2、-8.5、-8.3和-8.2,高于其他化合物。在这四个化合物中,ADMET筛选未发现两个筛选化合物CID-5271805和CID-9817839的毒性特征。此外,药物-蛋白质复合物的SASA(溶剂可及表面积)、Rg(回转半径)、RMSD(均方根偏差)和RMSF(均方根波动)轮廓在分子动力学模拟研究中揭示了化合物的稳定性和刚性。然而,这些研究需要通过实验方法进行验证,以开发更有效的抗癌药物。
摘要:药物重新利用,也称为药物重新定位或重置药物,正在获得动力,作为确定其原始医疗指示以外现有药物的新型治疗用途的一种策略。这种方法利用了已知的安全概况和批准药物的作用机制,以加快各种疾病治疗的发展。秋水仙碱是一种古老的草药,具有既定的抗炎特性,在痛风和家族地中海热等条件下获得了公认的功效,它对其传统用途以外的潜在应用引起了人们的兴趣。发现秋水仙碱与微管的结合能力对于细胞结构和有丝分裂所必需的,引发了其在癌症治疗中的作用。组蛋白脱乙酰基酶抑制剂(HDACS)也通过通过组蛋白和非内酮蛋白乙酰化来调节基因表达在癌症研究中有希望。虽然秋水仙碱通常并未将其归类为HDAC抑制剂,但研究表明其对HDAC活性的潜在影响。本研究旨在研究秋水仙碱和HDAC抑制剂之间酶结合能的相似性,探索秋水仙碱作为HDAC抑制剂的潜在效用,并引入新的癌症治疗途径。通过阐明秋水仙碱和HDAC抑制剂之间的潜在治疗重叠,该研究旨在提高药物重新利用领域,并为治疗癌症和其他疾病的治疗提供新的见解。
2.1能源市场..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 1.1芬兰能源市场.....................................................................................Elspot market ............................................................................................. 20 2.1.1.1.2.Elbas market ............................................................................................... 20 2.1.1.2 Ancillary service markets .............................................................................. 20 2.1.1.2.1.频率遏制储备(FCR)....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 21 2.1.1.2.1.1。FCR for normal operation (FCR-N) ....................................................... 22 2.1.1.2.1.2.fcr用于干扰(FCR-D)....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 22 2.1.1.2.2。频率恢复储备(FRR)................................................................................................................................................................................................................................................................................................................................... 23 2.1.1.2.2.1。Automatic frequency restoration reserve (aFRR) ................................... 23 2.1.1.2.2.2.手动频率修复储备(MFRR)............................................................................................................................................................................................................................................................................................................................................................................................................................... 24 2.1.1.2.1。Balancing power market ............................................................................ 25 2.1.1.2.1.1.UP-regulation ......................................................................................... 25 2.1.1.2.1.2.Down-regulation ..................................................................................... 25 2.1.1.2.2.储备市场运营................................................................................................................................................................................................................................................................................................................................................................... QUESS申请的背景使用的市场(比较) (Midcontinent Independent System Operators) .................................. 28 2.1.2.4 NYISO (New York Independent System Operator) ...................................... 28 2.1.2.5 ISO-NE (The Independent System Operator New England) ......................... 28 2.1.2.6 SPP (The Southwest Power Pool ) ................................................................. 29 2.1.2.7 CAISO (The California Independent System Operator) ................................ 29
转移仍然是全世界癌症死亡的主要原因,并以其高度转移性进展而闻名的肺癌仍然是最致命的恶性肿瘤之一。肺癌转移可以选择性地扩散到多个不同的器官,但是该过程的遗传和分子驱动因素仍然很少了解。了解肺癌转移的异源基因组谱图被认为是识别降低靶标的thera靶标的至关重要的关键。研究确定了转移是细胞簇而不是单个癌细胞的关键来源。这些簇,称为静态癌细胞簇(MCCC)比单个癌细胞高100倍。不幸的是,访问这些转移的这些主要驱动因素仍然很困难,并限制了我们对它们的分子和基因组谱的理解。文献中的有力证据表明,MCCC中差异调节的生物学途径可以提供新的治疗药物靶标,以帮助打击癌症转移。为了扩大对MCCC的研究及其在转移中的作用,我们展示了一种新颖的原理技术证明,可以直接从患者的全血中捕获MCCC。我们的平台可以通过结合基于仿生的边缘效应以及免疫亲和力与分离MCCC来轻松调节不同的实体瘤类型。在MCCC中采用基于过表达CD44的选择捕获方法提供了一种优先将它们与全血中隔离的方法。通过此外,当将类似MCCC的模型细胞簇刺入全血时,我们表现出高盖效率超过90%。
研究发现,有一些非常罕见但重要的副作用在服用这些药物的患者中似乎更为常见。您应该意识到这些潜在的副作用,就好像它们没有尽早确定一样,它们可能非常危险和威胁生命。这是什么副作用?极为罕见,但威胁生命的细菌感染在生殖区域周围的肌肉,神经,脂肪和血管周围的皮肤下的细菌感染。这是一种罕见的严重感染,称为会阴的坏死性筋膜炎(坏死意义:身体组织死亡或由于缺乏血液流动或细菌感染而死亡。在这种情况下,包括睾丸,阴茎和阴部,这是阴囊和肛门之间的区域;或女性的肛门和外阴之间的区域也称为Fournier的坏疽。如果延迟治疗可能是致命的。如果您有任何这些症状,请立即联系医学专家,例如医生或护士,即使您的血糖接近正常。如果您的GP练习已关闭,请通过拨打111致电NHS 111服务,以获取更多建议。告诉他们您担心上述条件之一。停止这种药物,直到您获得进一步的医疗建议。这些副作用有多常见?Fournier的坏疽可能发生在没有糖尿病的人中,但在糖尿病患者中更常见。估计在用SGLT-2抑制剂治疗的100,000名患者中约有1个发生。我应该寻找什么?如果我正在接受大手术怎么办?大多数Fournier的坏疽病例发生在男性中,但是在接受SGLT2抑制剂治疗的患者中,女性也可能发生。以下症状可能表明fournier的坏疽:生殖器的压痛,发红或肿胀或从生殖器到直肠的区域,并且发烧超过100.4 F(38c)或一般不适的感觉。这些症状可能会迅速恶化,因此立即寻求治疗很重要。请在手术前24小时停止这种药物。仅在您完全移动并正常饮食后重新启动。如果我感到不适,我的医生或护士会做什么?您将进行手指刺血测试,以测试血液中葡萄糖和酮(脂肪的分解产物)的量。如果酮的水平很高,则可能需要医院治疗。如果怀疑Fournier的坏疽,您需要在必要时进行广谱抗生素和手术清创术的及时医院治疗。