摘要。自从第一个耦合模型对比项目版本6(CMIP6)模拟释放以来,讨论最多的主题之一是某些模型的有效气候灵敏度(EC)较高,与以前的CMIP相比,CMIP6中EC值的范围更高。对ECS的重要贡献是云气候反馈。尽管在过去的几十年中,气候模型一直在不断开发和改进,但云的现实代表仍然具有挑战性。云会导致建模的EC中的大型不确定性,因为云属性的预计变化和云反馈也取决于当前的模拟场。在这项研究中,我们研究了总共51 CMIP5和CMIP6模型的云物理和辐射特性的表示。ecs用作简单的指标来对模型进行分组,因为物理云对变暖的敏感性与云反馈密切相关,而云反馈又对EC有很大的贡献。在将来的情景模拟中,ECS组分析了云属性的预测变化。为了帮助解释预计的变化,还分析了历史模拟的模型结果。结果表明,净云辐射效应的差异是对三个模型组中变暖的反应的差异是由一系列云制度而不是单个区域的变化驱动的。在极地区域中,高ECS模型显示,由于变暖,云的净冷却效应的增加较弱,而不是低ECS模型。同时,高ECS模型显示出热带海洋和亚热带层流量区域的云冷却效果的下降,而低ECS模型的变化很小,甚至几乎没有变化。在南大洋上,低-ECS模型比高ECS模型对变暖的净云辐射效应具有更高的灵敏度。
摘要:已经开发了一种新型的压缩空气存储(CAES)系统,该系统与基于其进食水热系统的煤炭功率厂创新。在混合设计中,将CAES系统的压缩热转移到煤炭发电厂的饲料中,并在膨胀机被从煤炭发电厂采集的饲料加热之前被压缩空气。此外,扩张器的废气被用来加热煤炭发电厂的部分进食水。通过建议的集成,可以消除常规CAES系统的热量储能设备,并且可以改善CAES系统的性能。基于350兆瓦的超临界煤炭发电厂,对拟议的概念进行了热力学评估,结果表明,新CAES系统的往返效率和往返效率可以分别达到64.08%和70.01%。此外,还进行了灵敏度分析,以检查环境温度,空中压力,扩张器入口温度和煤炭功率负载对CAES系统性能的影响。上述工作证明,在各种条件下,新颖的设计有效,为CAES技术的发展提供了重要的见解。
在感应介质的折射率中。5通过金属/介电板的界面通过金属/介电板的界面诱导金属的自由电子振动性,而这反过来,这又,它因能量传递而沿界面开始旋转,从而使Indistion Em Wavis携带以免费的电子表面携带,因此,该金属的自由电子均促进了金属的自由电子,从而诱导了金属的自由电子,从而诱导金属的自由电子,从而诱导金属的自由电子,从而诱导金属的自由电子,从而使Indistion Em the Em em the Emalons携带的是金属的携带。6沿金属和电介质之间界面的自由电子的集体传播称为表面等离子体波(SPWS)。7 SPWS和Evanescent Wave之间的耦合是由于相匹配而导致的,这是实现SPR条件的必要条件。8,这种情况的实现导致结构6 - 8的重复响应的谐振倾角,因为表面波的激发是直接通过3D梁的激发而引起的。有不同的激发技术,例如Kretschmannconguration,其中,棱镜用于表面等离子体的激发,ottoconguration,ber耦合,以及在全球研究人员使用的耦合方案。9在所有这些耦合方案中,Kretschmanncon基于guration基于辅助的耦合方案是最受欢迎的耦合方案,是通过在TM极极化的入射波中通过TM极极化的入射波涂上(AU)和银色(AG)的新型金属(例如(AU)和银色(Ag)的新型金属(例如(AU)和银色(Ag)),通过涂层新型金属(例如(AU)和银色(Ag),来激发evaneScent波。10黄金通常是理想的选择,因为它的能力
部长法令:2016 年 5 月 25 日 由 PABLO FRANCISCO RAMOS VARGAS 提交论文由 TIMA 实验室研究主任 Raoul VELAZCO 指导,格勒诺布尔阿尔卑斯大学讲师 Nacer-Eddine ZERGAINOH 联合指导,在 IT 技术实验室内编写和微电子学的集成系统架构电子、电工、自动、信号处理博士生学院 (EEATS) 对 SEE 敏感度的评估以及预测多核和众核处理器中实施的应用程序错误率的方法 2017 年 4 月 18 日公开答辩论文,在评审团组成:
海上风力涡轮机 (OWT) 支撑结构处于恶劣环境中,由高度随机的载荷和复杂的土壤-结构相互作用定义,因此需要采用概率方法进行设计。本文进行的研究通过专门开发的模块化非侵入式结构可靠性评估公式对这些固有随机变量施加在复杂的 OWT 支撑结构上进行了敏感性分析。这项研究的结果表明,对于极限状态 (ULS) 和疲劳极限状态 (FLS),风速的不确定性是结构设计的驱动因素,而流体动力载荷效应是次要的,而它们对使用极限状态 (SLS) 的相对敏感性无法清楚区分,但被认为具有主导影响。此外,据推断,在 ULS 设计中,变量之间的相关性对结构的可靠性有显著影响。© 2022 由 Elsevier BV 代表韩国造船师协会制作和托管。这是一篇根据 CC BY-NC-ND 许可协议 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 开放获取的文章。
影响疾病的严重程度,进而影响辐射灵敏度的程度。在不同突变的患者中观察到辐射敏感性的这种变异性,反映了这些遗传变化对病情的多种影响(29)。目前对具有多种突变的患者的DSB修复效率和辐射敏感性的研究目前有限或不可用。
基于 CRISPR 的功能基因组学筛选是识别合成致死癌症药物靶点的有力工具。目前分析汇集的 CRISPR 筛选的策略通常依赖于来自在两种实验条件下具有不同相对丰度的单个向导 RNA (sgRNA) 的信号。然而,传统方法通常容易受到由异常细胞克隆驱动的假阳性和假阴性的影响,因为 sgRNA 丰度不能解释由相同 sgRNA 的不同编辑结果导致的异质表型。为了克服这个问题,我们在每个 sgRNA 中添加了 DNA 条形码,以创建 CRISPR 文库的唯一分子标识符 (UMI),并开发了一个配套的分析平台,以实现强大的工业规模 CRISPR 筛选。在这里,我们介绍了 UMIBB,一种用于分析 UMI-CRISPR 数据的新型非参数贝叶斯方法。与每个 sgRNA 的对照实验条件相比,具有标准化计数消耗或富集的 UMI 数量由 beta-二项分布建模。基因水平统计数据是通过将 sgRNA 水平后验概率的 z 分数与每个 sgRNA 中 UMI 的数量加权而得出的。这种方法最大限度地减少了异常细胞克隆对统计数据的影响,并优先考虑每个基因中多个 UMI 之间计数差异一致的基因。为了评估 UMIBB 的功效,我们在低覆盖率(200X)基因组规模负选择筛选上对其进行了基准测试,并与高覆盖率(1000X)筛选的结果进行了比较。这些筛选是在用曲美替尼或载体对照处理的 KRAS 突变癌细胞(A549)上进行的。尽管在较低覆盖率筛选中通常会观察到高噪音水平,但我们的方法能够发现 >85% 的曲美替尼已验证的致敏基因,并且与传统方法相比实现了最高的灵敏度。此外,我们将 UMIBB 应用于基因组规模的正向选择筛选,并成功确定了新基因(RAD18 和 UBE2K)是 BRCA1/2 突变细胞系中 USP1 依赖性的关键介质。我们的研究表明,UMIBB 对克隆异质性导致的假阳性具有很高的稳健性,并且更有可能识别真正的遗传相互作用。
摘要:射频能量收集 (RFEH) 是目前广受欢迎的一种可再生能源收集形式,因为许多无线电子设备可以通过 RFEH 协调其通信,尤其是在 CMOS 技术中。对于 RFEH,检测低功率环境 RF 信号的灵敏度是重中之重。通常采用 RFEH 输入端的升压机制来增强其灵敏度。然而,保持其灵敏度的带宽非常差。这项工作在 3 级交叉耦合差分驱动整流器 (CCDD) 中完全在片上实现了可调升压 (TVB) 机制。TVB 采用交错变压器架构设计,其中初级绕组实现到整流器,而次级绕组连接到 MOSFET 开关,用于调节网络的电感。 TVB 使整流器的灵敏度保持在 1V 直流输出电压下,在 3 至 6 GHz 的 5G 新无线电频率 (5GNR) 频段的宽带宽内最小偏差为 − 2 dBm。在 − 23 dBm 输入功率下,直流输出电压为 1 V,峰值 PCE 在 3 GHz 下为 83%。借助 TVB,可以在 1 V 灵敏度点处保持 50% 以上的 PCE。提出的 CCDD-TVB 机制使 CMOS RFEH 能够以最佳灵敏度、直流输出电压和效率运行于宽带应用。
本文介绍了一种具有改进的流量灵敏度的 μ-科里奥利质量流量传感器装置。建立了一个 FEM 模型,该模型可以估算 μ-科里奥利装置的各种参数,例如共振频率、弹簧常数和科里奥利力。然后,这些参数用于分析模型以确定流量灵敏度。所提出的 FEM 模型可以快速模拟这些属性,通过改变设计的多个维度和其他属性来实现优化,并观察它们对流量灵敏度的影响。根据模拟结果,制造了三种装置。所有装置都经过了特性分析,并对不同装置以及测量结果和模拟结果进行了比较。该模型预测的共振频率误差小于 10%,但 1 个(共 6 个)装置除外。根据装置的类型,预测的灵敏度准确度在 6-40% 以内。与典型尺寸的参考装置相比,流量灵敏度提高了约 4-11 倍。
图2:大众护卫技术的硬件组件。Sciex 7500+系统的Q0区域中的添加t杆电极积极去除污染离子(紫色符号),从而导致输入仪器的样品羽流(红色和绿色符号)。T杆电极下游的离子光学元件的视觉比较显示出对基质污染的影响较小,尽管在源窗帘板上沉积了明显的残留物(左上),当时与Sciex 7500系统上的相同组件相比,没有此保护,如右下所示。