3. 调整特定应用环境的推荐额定值:PPI 发布的 HDB/PDB/MRS/SDB 推荐额定值适用于与获得测试数据的条件相同的条件,例如恒定压力、温度和特定测试环境。各种行业标准或法规都提供了适当的设计系数或设计系数,以计算所需应用中使用的管道系统的相应最大允许工作压力。在某些条件下,例如压力循环、更高的温度、更恶劣的环境或处理和安装质量,所有这些都可能显著降低管道的耐用性,应选择更保守的设计系数或设计系数。有关设计系数和设计系数的更多信息,请参阅 PPI TR-9,“热塑性管道材料压力应用的推荐设计系数和设计系数”。用于获得这些额定值的高温持续压力测试可能不足以充分评估热塑性材料或管道的热稳定性或氧化稳定性性能。
本文所含信息被认为是可靠的,但对其准确性、特定应用的适用性或将获得的结果不作任何形式的陈述、保证或担保。这些信息通常基于使用小型设备的实验室工作,并不一定表明最终产品的性能或可重复性。所介绍的配方可能未经稳定性测试,应仅作为建议的起点使用。由于商业上用于处理这些材料的方法、条件和设备各不相同,因此不保证或担保产品是否适用于所披露的应用。全面测试和最终产品性能是用户的责任。对于任何超出 Lubrizol Advanced Materials, Inc. 直接控制范围的材料的使用或处理,Lubrizol Advanced Materials, Inc. 不承担任何责任,客户承担所有风险和责任。卖方不作任何明示或暗示的保证,包括但不限于适销性和针对特定用途的适用性的暗示保证。本文所含内容不应被视为未经专利所有者许可而实施任何专利发明的许可、建议或诱因。
无线皮肤界面电子和微流体设备有可能取代有线、笨重且繁琐的个人和临床健康监测技术,使护理从医院环境延伸到家庭。这些设备用于皮肤时,通常采用硅基热固性弹性体 (TSE) 作为封装电子元件的层或用作模制微通道,用于捕获、储存和分析生物流体(例如汗液)。阻碍此类设备商业化应用的障碍包括这些弹性体难以在传统的大规模生产实践中使用。它们相对较高的成本和无法回收是额外的缺点。相比之下,热塑性弹性体 (TPE) 完全兼容工业规模制造工艺,成本低,可回收利用。与 TSE 一样,TPE 柔软、可拉伸、可弯曲、光学透明,同时还具有其他非常适合应用于无线皮肤界面设备的特性。本文介绍了三种市售 TPE 的特性、加工和应用技术,包括两种热塑性聚氨酯,用作无线皮肤水分传感器的封装层,以及一种热塑性苯乙烯嵌段共聚物,用于微流体汗液分析平台。结果表明,TPE 可以有效地集成到这些类型的设备中,成为 TSE 的有力替代品,是一种可大规模生产的可持续材料选择。
法律信息 提及的所有商标均为亨斯迈公司或其关联公司在一个或多个(但不是所有)国家/地区的财产或已获授权。本文所述产品(以下简称“产品”)的销售须遵守亨斯迈先进材料有限责任公司或其适当关联公司的一般销售条款和条件,包括但不限于亨斯迈先进材料(欧洲)有限公司、亨斯迈先进材料美洲公司、亨斯迈先进材料(香港)有限公司或亨斯迈先进材料(广东)有限公司(以下简称“亨斯迈”)。以下内容取代买方文件。尽管据亨斯迈所知,本出版物中的信息和建议在出版之日是准确的,但本出版物中包含的任何内容均不得解释为任何明示或暗示的陈述或保证,包括但不限于任何适销性或针对特定用途的适用性的保证、不侵犯任何知识产权的保证、或有关质量或与先前描述或样品的一致性的保证,并且买方承担因使用此类产品而导致的所有风险和责任,无论是单独使用还是与其他物质结合使用。本文所述的任何声明或建议均不得解释为关于任何产品是否适合买方或用户的特定用途的陈述,或侵犯任何专利或其他知识产权的诱因。数据和结果基于受控条件和/或实验室工作。买方有责任确定此类信息和建议的适用性以及任何产品是否适合其特定用途,并确保其对产品的预期用途不侵犯任何知识产权。产品可能具有或将成为危险品。买方应 (i) 从亨斯迈获取材料安全数据表和技术数据表,其中包含有关产品危害和毒性的详细信息,以及产品的正确运输、处理和储存程序;(ii) 采取一切必要措施,充分告知、警告可能处理或接触产品的员工、代理、直接和间接客户和承包商,并使其熟悉与产品有关的所有危害以及安全处理、使用、储存、运输和处置以及接触产品的正确程序;(iii) 遵守并确保可能处理或接触产品的员工、代理、直接和间接客户和承包商遵守适用的材料安全数据表、技术数据表或亨斯迈提供的其他说明中包含的所有安全信息以及与产品的处理、使用、储存、分销和处置及接触有关的所有适用法律、法规和标准。请注意,产品可能因国家/地区而异。如有任何疑问,请联系您当地的亨斯迈代表。
本文所含信息被认为是可靠的,但对其准确性、特定应用的适用性或将获得的结果不作任何形式的陈述、保证或担保。这些信息通常基于使用小型设备的实验室工作,并不一定表明最终产品的性能或可重复性。所介绍的配方可能未经稳定性测试,应仅作为建议的起点使用。由于商业上用于处理这些材料的方法、条件和设备各不相同,因此不保证或担保产品是否适用于所披露的应用。全面测试和最终产品性能是用户的责任。对于任何超出 Lubrizol Advanced Materials, Inc. 直接控制范围的材料的使用或处理,Lubrizol Advanced Materials, Inc. 不承担任何责任,客户承担所有风险和责任。卖方不作任何明示或暗示的保证,包括但不限于适销性和适用于特定用途的暗示保证。本文所含内容不应被视为许可、建议或诱因,未经专利所有者许可而实施任何专利发明。Lubrizol Advanced Materials, Inc. / 9911 Brecksville Road, Cleveland, Ohio 44141-3247 / 216.447.5000 © 2014 The Lubrizol Corporation。保留所有权利。所有商标均归 The Lubrizol Corporation 所有 • www.lubrizol.com/engineeredpolymers
材料已得到广泛研究 [1-9]。在许多此类研究中,已报告了机械性能的显著变化和各种形式的水分引起的损坏 [4-8]。例如,吸收的水分已被证明会降低树脂的玻璃化转变温度 T~ [4,5],降低复合材料的基质主导性能,如横向拉伸强度和层内剪切强度 [4-6],并导致树脂膨胀,从而引起残余应力并导致微裂纹的形成 [5, 7-10]。吸收水分的这些有害影响被归因于树脂基质的塑化和降解以及纤维基质界面的降解 [5-10]。迄今为止,大多数水分研究都涉及热固性基质复合材料(例如石墨/环氧树脂),这些复合材料在 95% 至 100% 相对湿度环境中会吸收高达 1.2% 至 2% 的重量水分(纤维体积分数 v r 在 60% 至 68% 之间)[1,2,5-7]。最近,已经开发出热塑性(半结晶和非晶态)基质复合材料,与热固性基质复合材料相比,它们吸收的水分非常少 [3,4]。这种系统的一个例子是热塑性基质复合材料,由非晶态聚酰亚胺基质 Avimid | K3B 组成,并用 Magnamite | IM7 石墨增强