摘要:最近,基于聚合物的复合材料在低温条件下的应用已成为一个热门话题,尤其是在航空航天领域。在低温温度下,聚合物变得更脆,温度引起的热应力的不利影响更为明显。在本文中,综述了热塑性和热塑性聚合物用于低温应用的研究开发。本综述考虑了有关的文献:(a)经过修饰的热固性聚合物的低温性能以及所报道的修饰方法的改进机制; (b)某些商业热塑性聚合物的低温应用潜力以及经过修饰的热塑性聚合物的低温性能; (c)最近将聚合物用于特殊的低温环境液氧的进步。本文概述了针对低温应用聚合物的研究开发。此外,已经提出了未来的研究指示,以促进其在航空航天中的实际应用。
在过去的 30 年里,聚合物复合材料行业蓬勃发展,为航空、能源和运输部门生产先进的结构材料。然而,交联热固性基质的使用与重大的报废挑战有关,这对该行业来说是一个关键问题。此外,该行业的特点是许多劳动密集型流程。根据工业 4.0 原则,已经确定了两条主要途径来提高可持续性:利用高性能热塑性基质和将人工智能融入制造业。然而,人们对这些技术的生命周期评估存在很大的担忧,这些担忧在初始计算中没有考虑到,包括聚合物合成的环境足迹和训练人工智能的能源需求。这一观点旨在解决化学原料可能产生的大量二氧化碳排放以及这些新技术的高计算要求。
热塑性树脂,有时称为工程塑料,包括一些聚酯、聚醚酰亚胺、聚酰胺酰亚胺、聚苯硫醚、聚醚醚酮 (PEEK) 和液晶聚合物。它们由长而离散的分子组成,在加工温度下熔化为粘稠液体,通常为 500” 至 700” F (260° 至 3710 C),成型后冷却为无定形、半结晶或结晶固体。结晶度对最终基质性能有很大影响。与热固性树脂的固化过程不同,热塑性塑料的加工是可逆的,并且只需重新加热到加工温度,树脂就可以根据需要形成另一种形状。热塑性塑料虽然在高温强度和化学稳定性方面通常不如热熔胶,但更耐开裂和冲击损伤。然而,值得注意的是,最近开发的高性能热塑性塑料,如具有半结晶微结构的 PEEK,表现出优异的高温强度和耐溶剂性。
包装行业是塑料的主要用户,它贡献了进入我们环境的最高塑料废物。因此,诸如基于生物的塑料之类的替代品已经出现并变得越来越商业化。热塑性淀粉(TPS)是生产生物塑料膜中使用的原材料之一。但是,使用TPS的主要缺点是由于其机械性较低,障碍性能较差和蓬松性。本评论文章将TPS摘要作为食物包装材料的选择。它通过掺入生物填充物和Essentials Oils来回顾有关TPS改进的最新研究。它还描述了对TPS增强生物膜对膜特性(包括机械,屏障和抗菌特性)的影响。本文还讨论了TPS增强生物膜的性能,以确保食品包装应用食品的货架稳定性和易腐性。最后,它还强调了食品包装行业TPS增强生物膜的挑战和机会。
ARKEMA 和 HEXCEL 完成首个由热塑性复合材料制成的航空结构 这一成就源于 Hexcel 和 Arkema 之间的战略合作伙伴关系。高性能热塑性复合材料结构采用 HexPly® 热塑性胶带设计和制造。这些航空级材料由 Arkema 的 Kepstan® PEKK 树脂和 Hexcel HexTow® AS7 和 IM7 碳纤维开发而成。该示范项目是作为合作项目 HAICOPAS 的一部分开展的。HAICoPAS 的主要目标是优化由高性能热塑性树脂和连续碳纤维制成的单向复合带的设计和生产工艺。此外,该项目旨在开发一种更高效的胶带铺放技术和一种具有实时质量控制的新型连续动态原位焊接 (ISW) 装配系统。最终目标是生产可替代飞机结构中的金属材料(如钢、铝和钛)的复合材料部件,同时实现成本竞争力和高生产率。项目合作伙伴的工作已成功克服项目开始时确定的技术障碍,包括:
摘要目的:这项研究分析了工业4.0和过程改进的准备如何影响Manaus工业中心的热塑性公司。它专注于“制造和运营”和“供应链”之间的关系。目标是评估其对运营效率的影响。理论框架:理论框架强调了组织成熟度,物流,自动化和物联网对工业4.0中热塑性行业的重要性,以及使用QRM和PCP等策略以优化库存和降低成本的策略。方法:该研究采用混合和描述性方法以及三角剖分进行分析。数据是从PIMM 4.0系统收集的,并使用JASP软件进行了分析。结果和讨论:分析结果表明,与其他变量相比,“行业4.0”变量可能对操作效率产生更大的影响。但是,与“在制造业中使用数据”,“实时清单”和“交货时间”相比,结果不足以明确确定运营效率。研究意义:研究表明,为工业4.0和运营变量的准备并不会显着影响热塑性行业的效率。它强调需要综合策略克服技术采用挑战。独创性/价值:研究使用混合方法和逐步研究热塑性部门的行业4.0准备就绪。关键字:行业4.0,热塑性,相关性,逐步方法。它突出了背景因素和战略规划中综合方法的重要性。
摘要本研究研究了用多壁碳纳米管(MWCNT)加强热塑性聚氨酯(TPU)复合材料的机械性能,以在运动保护齿轮中应用。目标是(1)系统地评估MWCNT载荷水平和对齐对拉伸,压缩,硬度和影响特性的影响; (2)确定用于平衡增强的最佳MWCNT含量范围; (3)探索可扩展的制造方法。MWCNT/TPU复合材料具有0.5-4 wt%的负载,通过溶液混合和压缩成型预先折扣。机械测试显示出显着改善,有62 MPa拉伸强度(+19%),507 MPa模量(+23%)和1-4 wt%MWCNT的撞击能量吸收增加10%。MWCNT对齐进一步增强了性能,而高于2 wt%的负载显示一些封闭。微结构表征证明了良好的MWCNT分散和界面键合。结果表明,低MWCNT添加可以大大提高TPU的强度,刚度和撞击性。这表明开发了具有改善能量吸收和硬脑膜功能的头盔和垫子(例如头盔和垫子)的高级,轻巧的运动保护设备的巨大潜力。未来的工作将着重于针对特定齿轮应用的复合处理和设计。
Rojas-Lema,Gomez-Caturla,J.,Balart,R.,Arrieta,M.P。,&Garcia-Sanoguera,D。(2024)。用适合注射成型的甘油增塑的热塑性锌生物聚合物的开发和表征。工业作物和产品,218,119035。https://doi.org/10.1016/j.indcrop.2024.119035
三菱化学集团 (MCG) 先进材料部门是全球领先的高性能热塑性材料制造商,产品包括半成品和成品。该公司在 19 个国家设有办事处,拥有 3,000 多名员工。其特种工程热塑性塑料和复合材料的性能优于金属和其他材料,并广泛应用于资本货物行业。该公司与众多客户市场的行业领导者密切合作,不断开发新的应用领域。