在 2040 年及以后继续推动航空业的发展……需要快速制造的新能力:• 未来的生产率需要改进和简化飞机设计、材料、认证和制造方法之间的关系• 设计、认证和制造密不可分,必须在飞机概念化过程的早期一起考虑。
如今,客户对其产品的要求非常严格。例如,新材料组合具有一些传统材料(如金属合金)无法单独满足的性能。为了满足航空航天、建筑、汽车、海事、风能和国防工业等大型领域的这些需求,最近开发了材料。由于研发项目,许多市场应运而生。复合材料在这些市场中占据了重要地位。复合材料是由两种或多种宏观上具有不同物理或化学性质的成分组合而成的材料。组成复合材料的成分大多保持其化学、物理和机械性能 [1]。复合材料生产的目的是为材料添加无法单独实现的新性能。这些材料不能相互溶解。复合材料由三个独立的部分组成。它们是基体、增强材料和界面。界面是基体和增强材料之间提供接触的区域。基体可以由塑料、金属和陶瓷材料制成。它通过防止增强元件在复合材料结构内独立移动并将负载转移到增强元件上,将纤维结构保持在一起。它包裹增强元件并赋予复合材料形状 [2]。
摘要这项研究考虑了热塑性和热固性在界面处的延伸层压层之间的粘附。通过机械测试和显微镜研究了过程开始时热固性治愈程度的影响。提高初始治愈程度降低了层间断裂韧性和相间厚度。断裂韧性降低到相间厚度不成比例,这归因于相间形态的变化和界面处的表面接触降低。使用凝胶层厚度测量数据开发了一个简化的模型,以预测扩散水平,而初始治疗的初始度增加。与热固性 - 热固性共固化相比,在较低的初始治愈程度下具有优异的键强度,并且预测对初始治愈程度的敏感性提高,这表明过程变异性的影响更大。因此,对于特定财产的关键批判性,从半固定中潜在的制造效率提高与降低的效率之间的权衡将是一个重要的考虑因素。
我们的 FF/HH 化合物经过认证的性能的一个具体例子是 Gazguard® 728 化合物,它已经通过 ISO 10423:2009 和 ANSI/API 规范 6A 第 21 版的材料等级 FF/HH 认证,适用于以下气体混合物:• 10% H 2 S / 10% CH 4 / 80% CO 2 • 喷气燃料 A、2 号柴油 • 庚烷/环己烷/甲苯的 70/20/10 混合物此外,由 Gazguard® 728 组成的 S 密封件和 FS 密封件已在不同尺寸和温度范围内获得了符合 ISO 10423 F1.11 的 10,000 psi PR2 认证。
对热塑性复合材料的需求不断增加,因为这些材料在热固性工具中具有许多优势,例如高韧性,较长的存储时间,易于修复和回收,以及具有热成型和热量焊接的能力。但是,使用液体复合成型技术制造热塑性复合零件(例如树脂转移成型,真空辅助树脂转移成型。。。 )在熔融加工的情况下通常很棘手,在熔体过程中,由于热塑性塑料的高融化粘度,因此应选择高温和压力以浸渍纤维增强。可以通过反应性处理来克服这些问题,而低粘度单或寡聚前体首先浸渍了纯净的预成型,而热塑性基质的聚合则发生在原位。本文绘制了关于连续纤维增强基于丙烯酸的反应性热塑性塑料制造特征的最新技术(例如聚合甲基丙烯酸酯(PMMA)(PMMA)越来越流行。技术的甲基丙烯酸酯单体的原位聚合技术,流变特性和聚合动力学的表征和建模以及一些与制造相关的问题(例如聚合收缩)进行了综述。还引入了连续钢筋复合材料和潜在工业应用的不同制造技术中使用反应性PMMA的特定特征。最后,提出了学术研究和工业发展的一些观点。
图 3:PAN IPP 的平面内分辨率评估。(a) 定制 USAF-1951 光掩模的投影聚焦在液-液界面。(b) 使用 0.6 wt.% V-50 从 IPP 获得的目标 PAN 薄膜图像。黄色箭头表示 (c,d) 中表示的强度分布的线和方向。(cd) 第 3 组在 0.5、1.0 和 1.5 wt.% (c) V-50 和 (d) VA-044 的强度分布。分辨率极限对应于第一组,其中线条不再能从强度分布中分辨出来,黑线表示在光掩模的图像平面中获得的强度分布。(e) 分辨率极限定义为已识别组中的单个线宽和 (f) 印刷 PAN 薄膜的每个图像中的气泡数与光引发剂浓度和类型。标记和误差线表示在相同条件下获得的五种 PAN 薄膜的平均值和标准偏差。所有照片的曝光时间为 30 秒。
摘要:近年来,由于汽车和航空航天等结构应用对减轻重量和提高性能的需求,金属的粘合剂粘合变得越来越重要。我们利用硬木生物质中的技术有机溶剂木质素和丙烯腈丁二烯共聚物橡胶 (NBR) 开发了用于粘合钢基材的可再生热塑性粘合剂。将丙烯腈摩尔比分别为 33%、41% 和 51% 的 NBR33、NBR41 和 NBR51 与木质素混合形成两相热塑性粘合剂,并测量其粘合性、粘弹性和表面特性。组合物中的木质素含量各不相同,范围从 40% 到 80% (w/w),以改变材料的韧性、刚度和表面能特性。NBR 中的腈含量越高,木质素和 NBR 相之间的相互作用或反应性越好,从而导致粘合剂的模量和刚度越大。同时,增加木质素的比例会降低韧性并提高刚度,在木质素负载率为 60% 的 NBR51 中测得的最高粘合强度为 13.1 MPa。表面能测量表明,总表面能(极性和分散表面能的总和)随木质素负载而上升,这表明表面能和基质强度对合成材料的粘合性能都起着关键作用。开发并实施了基于有限元的粘结区模型 (CZM),以研究粘合接头的破坏强度。这项研究证明了木质素作为粘合剂的宝贵组成部分的可行性,这不仅是因为其固有的化学结构和刚性,还因为其表面能特性。
问题虽然热塑性材料广泛应用于增材制造 (AM),并已显示出强度高、重量轻和生产成本相对较低等优势,但它们也具有某些缺点,例如熔化温度较低以及在长期应力负荷下容易拉伸和变弱。由于熔丝制造 (FFF) 和熔粒制造 (FGF) 等方法只能处理热塑性材料,因此迫切需要开发新的挤出方法来处理具有低热膨胀系数 (CTE) 的热固化热固性材料,以用于高强度和高温应用。即使是当今最先进的打印机产品也存在差距,禁止使用工业和军事相关应用中常见的高级热固性复合材料。
材料已得到广泛研究 [1-9]。在许多此类研究中,已报告了机械性能的显著变化和各种形式的水分引起的损坏 [4-8]。例如,吸收的水分已被证明会降低树脂的玻璃化转变温度 T~ [4,5],降低复合材料的基质主导性能,如横向拉伸强度和层内剪切强度 [4-6],并导致树脂膨胀,从而引起残余应力并导致微裂纹的形成 [5, 7-10]。吸收水分的这些有害影响被归因于树脂基质的塑化和降解以及纤维基质界面的降解 [5-10]。迄今为止,大多数水分研究都涉及热固性基质复合材料(例如石墨/环氧树脂),这些复合材料在 95% 至 100% 相对湿度环境中会吸收高达 1.2% 至 2% 的重量水分(纤维体积分数 v r 在 60% 至 68% 之间)[1,2,5-7]。最近,已经开发出热塑性(半结晶和非晶态)基质复合材料,与热固性基质复合材料相比,它们吸收的水分非常少 [3,4]。这种系统的一个例子是热塑性基质复合材料,由非晶态聚酰亚胺基质 Avimid | K3B 组成,并用 Magnamite | IM7 石墨增强