考虑到冷却液的各种流速,配备了圆柱形锂离子电池配备的电池组,用于冷却电池组。部分浸入方法用于减少电池组的总重量,从而增加功率密度。在细胞之间考虑了2 mm的微小间隙为高细胞密度。评估压降和温度分布以找到细胞的最佳条件。评估冷却液的不同流速以及电池的热量产生速率,以达到最低压力下降的温度目标。结果表明,在快速充电(15 kW)期间,考虑到21.5 lpm的冷却液流速,在电池组中,在热点温度为51°C的同时,可以在电池组中达到33°C的平均温度。对于3kW的热量产生速率,可以使用2.15 LPM流速来达到33.8°C的平均温度。
超宽的带隙半导体β加氧化物(β -GA 2 O 3)使电子设备的低传导损失和高功率有望。但是,由于β -GA 2 O 3的天然较差的导热率,其功率设备具有严重的自加热效果。为了克服这个问题,我们强调了使用TCAD模拟和实验的设备结构对β -GA -GA 2 O 3 Schottky屏障二极管(SBD)的峰值温度的影响。在TCAD中模拟了SBD拓扑,包括β -GA 2 O 3的晶体取向,Schottky金属,阳极面积和厚度的工作功能,表明β -GA -GA 2 O 3的厚度在降低二极管峰值温度方面起着关键作用。因此,我们制造了具有三个不同厚度外延层和五个不同厚度底物的β -GA 2 O 3 SBD。使用红外热成像摄像头测量二极管的表面温度。实验结果与模拟结果一致。因此,我们的结果为高功率β -GA -GA 2 O 3二极管提供了新的热管理策略。
绝缘子粘合胶的粘合强度 (又称搭接剪切强度) 会降低,在高于其额定值的温度下会开裂并最终脱落。搭接剪切强度是衡量胶粘剂粘合强度的标准指标。它取决于胶粘剂在施加剪切力 (平行于粘合表面的力) 时将两个表面粘合在一起的能力。对于绝缘子粘合胶,保持高搭接剪切强度至关重要,因为它能确保绝缘层即使在物理应力下也能保持粘合。但是,在超过胶粘剂规定额定值的温度下,胶粘剂的聚合物结构会开始降解。这种降解有多种形式:软化、聚合物链之间失去粘结力,甚至粘合材料发生化学变化。
1. Y. Shabany,《热传递:电子热管理》,CRC Press,2009 年。2. K. Azar,《电子冷却中的热测量》,CRC Press,1997 年。3. S. Kakac、H. Yuncu、K. Hijikata,《电子系统冷却》,Kluwer Academic Publishers。4. D. Reay、P. Kew、R. McGlen,《热管:理论、设计和应用》。5. ButterworthHeinemann,2014 年。J. Sergent,《热管理手册:电子组件》,
利用控制和设计方面的最新进步,我们的Gen3 BTM为车辆电池系统的关键热管理提供了高级功能。旨在在世界各地的广泛应用程序和市场上工作,GEN3建立在上一代BTMS设计的性能和可靠性的基础上。拆分型号设计用于与冷凝器组件与冷却器,泵和控制单元分开的易于包装。
r TH(J-A)表示Sytem的热电阻,并包括与包装接触的硅死亡,包装和任何热量,以将热量耗散到环境中。在给定的耗散级别的p d中,在环境温度t a上的ΔTj j t a的增加由以下方式给出:∆ t j = r th(j-a)x p d r th(j-a)(j-a)由设备内的许多元素和外部组成。如果单独考虑设备,则从硅死亡到铅框架,再到成型化合物,再到环境的耗散路径给出。实验值在此条件下非常大,尤其是对于小包装(例如小型轮廓类型)。但是,在实践中没有达到这一定位,并且当前工作中包含的详细数据表明了最坏的情况(浮动样本)。在大多数应用中,表面安装的设备都被焊接到基板上(通常是环氧玻璃(FR4),并通过焊接接头和铜互连进行热接触。在这种情况下,将热电路产生给铅框,然后转移给铅框,然后转移到substrate。图A显示了实验模块。
• 高热导率:最低 3W/m·K • 易于分配且可在室温下固化 • 与各种表面具有出色的附着力 • 可硬化以保护电池免受外力 • 经过验证的可靠性和电绝缘性
I.简介嵌入式系统是可能设计或以容量固定并为单个目的或为较大系统中的单个函数创建的计算机组件和软件的集合。可以在各种项目中找到一个嵌入式系统,包括工业机械,农业和工艺部门设备,车辆,医疗设备,相机,家用电器,飞机,自动售货机,玩具和移动设备。尽管嵌入式系统是计算机系统,但它们可以具有简单的用户界面(UI)或精心设计的桌面应用程序(GUI),例如在移动设备和具有嵌入式系统的设备中看到的,这些系统旨在执行单个目的。按钮,LED,触摸屏和其他一些类型的用户界面是可行的。此外,某些系统采用远程用户界面。微处理器或微控制器可用于嵌入式系统。在两种情况下都存在一个中央集成电路(IC),通常是为实时过程进行计算的。尽管微处理器在表面上相同,但后者仅包含一个中央处理设备(CPU),该设备要求添加升级套件(例如内存芯片),而前者则构建以独立运行。微芯片或微控制器可用于嵌入式系统。在两种情况下都存在一个主要的集成电路(IC),该电路通常是为实时过程进行计算的。
II。 引言电气化飞机热管理系统(TMS)设计已成为最近考虑的几种不同建筑和热管理技术的最新感兴趣的主题[1-3]。 这些飞机使用电力总成产生大部分或全部推进动力,因此它们比传统的燃油燃烧飞机上的电力系统产生的废热量多数。 此外,与喷气发动机推进的燃烧过程相比,热量更难拒绝,其中大部分热量通过废气排出。 对于电气推进,热量通常是由电动机绕组,电源设备,电池电池和其他与涡轮机发动机本质上耦合到自由式空气并不那么内在耦合的组件产生的。 因此,设计可以拒绝这种热量的TM的挑战是一个重大的挑战,而无需通过额外的TMS重量,阻力和功耗否定电气化的好处。 许多先前的研究都大小和建模为电气化飞机TMS,但很少考虑系统的故障模式和组件所需的冗余。 此外,许多研究不会在当前飞机获得飞行的环境中进行TMS的规模或评估性能。 本研究旨在量化体重,II。引言电气化飞机热管理系统(TMS)设计已成为最近考虑的几种不同建筑和热管理技术的最新感兴趣的主题[1-3]。这些飞机使用电力总成产生大部分或全部推进动力,因此它们比传统的燃油燃烧飞机上的电力系统产生的废热量多数。此外,与喷气发动机推进的燃烧过程相比,热量更难拒绝,其中大部分热量通过废气排出。对于电气推进,热量通常是由电动机绕组,电源设备,电池电池和其他与涡轮机发动机本质上耦合到自由式空气并不那么内在耦合的组件产生的。因此,设计可以拒绝这种热量的TM的挑战是一个重大的挑战,而无需通过额外的TMS重量,阻力和功耗否定电气化的好处。许多先前的研究都大小和建模为电气化飞机TMS,但很少考虑系统的故障模式和组件所需的冗余。此外,许多研究不会在当前飞机获得飞行的环境中进行TMS的规模或评估性能。本研究旨在量化体重,
电池技术和复合材料结构等航空学各个领域的创新为前所未有的飞行器设计打开了大门。高空长航时 (HALE) 飞机就是一个例子。顺应这一趋势,德国航空航天中心 (DLR) 押注于“高空平台 (HAP)”,这是一种太阳能供电的 HALE 无人驾驶飞行器 (UAV),用于类似卫星的操作。在整个任务过程中,HAP 将不得不应对极端环境条件,其特点是空气温度和密度低,辐射量大。因此,电子设备的正常运行将受到危害。本文涵盖了 HAP 上航空电子设备的热管理。为此,我们构建了一个基于第一原理的数学热模型。首先,该模型代表当前的 HAP 设计。根据估计,可以预测航空电子设备将面临过热和过冷的挑战,温度将达到 -60°C 至 190°C 之间。随后,应用了温度控制技术。选择被动技术作为首选,初步结果表明,引入导电板、涂料和散热器可确保航空电子设备的温度保持在其特定的工作温度范围内。