摘要 温度对锂离子电池的性能、寿命和安全性有至关重要的影响。因此,了解单个电池单元和电池组内的热量产生和耗散对于制定适当的热管理策略至关重要。关键挑战之一是电池单元的界面传热难以量化。采用稳态绝对法和瞬态激光闪光扩散率法分别测量电池层堆栈和单个电池层的热导率。结果表明,闪光扩散率法在横向和平面内方向均具有更高的热导率。差异主要是由界面热阻引起的,因此可以通过稳态和瞬态测量来估算。为了研究界面热传输对单个电池级别以外的影响,使用了多物理场电池模型。该模型建立在电池组的多尺度多领域建模框架之上,该框架考虑了多种物理现象之间的相互作用。通过数值实验量化了使用热管理材料的电池模块的好处。在热失控事件中,发现界面热阻可以通过显著减少电池之间的热传递来缓解电池模块中的热失控。关键词:锂离子电池、热管理、界面热阻、多物理场建模术语 T 温度 k 热导率 α 热扩散率 ρ 密度 C p 热容量 li 厚度
微纳杂化气凝胶的另一个重要特征是其高吸附效率。这些材料有可能从空气、水和工业废水中捕获和去除各种污染物,如重金属、染料和有机化合物 [8]。气凝胶的大表面积加上多孔结构为污染物的吸附提供了丰富的位点,使其在环境清洁应用中非常有效。特别是废物衍生的气凝胶对有害物质表现出极好的吸附能力,有助于可持续的污染控制解决方案。将功能基团纳入气凝胶结构可以进一步增强吸附,从而能够选择性地去除特定污染物并提高材料的整体效率。
摘要。在电动汽车 (EV)、可穿戴电子设备和大型储能装置中,电池热管理系统 (BTMS) 对电池性能、效率和寿命至关重要。本篇综合分析涵盖了最新的 BTMS 进展,并概述了当前的方法和技术。以下各节介绍了被动和主动热管理的最新发展。重点介绍了相变材料和热绝缘体等被动解决方案的简单性和效率。液体冷却、空气冷却和复杂制冷等操作系统精确且适应性强。尽管取得了进展,但 BTMS 仍然面临一些障碍。讨论了电池组温度分布不均匀、热失控危险以及在狭窄位置的 BTMS 集成。本综述还强调了现有技术中的材料限制、能耗权衡和可扩展性问题。本综述提供了 BTMS 的全面历史,确定了知识和技术差距,并为学者、行业资深人士和新手提出了电池技术研发建议。
来自化石燃料的温室气体排放是世界温室气体总量的重要组成部分。4,5如果各国政府不进一步努力减少温室气体排放,预计到 2050 年温室气体排放量将上升 52%。4,6预计到 2100 年底地球平均地表温度将上升约 1.1°C 至 6.4°C,对环境和生态系统造成不可逆转的影响,并严重损害人类健康。4全球三分之一的温室气体排放和 40% 的能源消耗来自建筑行业。因此,建筑物在室内环境中使用大量能源用于日光照明、制冷和供暖。7-9 2018 年 11 月,欧盟委员会已承诺将温室气体排放量减少至少 40% 至 1990 年的水平,同时提高能源效率 32.5%,并将可再生能源增加到 32%。 10,11 为了实现这些目标,研究人员、建筑师和建筑工程师致力于减少建筑能耗、碳排放以及使用和储存可再生能源。7,9,12
abtract-提出了10 kW热容量激光器的仿真结果。研究了使用高功率激光二极管光学泵送的两种不同的方案。使用Zemax软件对光学泵送的仿真显示了激光板中的均匀泵分布。此外,使用COMSOL检查激光平板中的温度分布。两个不同激光设计的发现表明,增加平板尺寸会降低温度分布和热问题。此外,冷却方案表明,10 kW HCl的冷却阶段在20-40秒内。在冷却阶段的水和空气冷却的比较表明,水冷却比空气冷却更有效。模拟结果证实了所提出的激光将是激光材料处理的有效装置。聚焦的10 kW HCl激光器将在1490 K处少于1 s后融化钢板。
摘要。从电子组件中去除热量,越来越多地用高功率耗散每单位体积微型化,这是要解决的重要工业问题,以避免由于温度过高以及维持性能和操作条件而导致失败。本文介绍了一维热力学模型的开发,以模拟固定PV太阳阵列的逆变器的电子芯片的冷却;这些通常位于非常不同的环境中,包括沙漠或非常炎热的区域,因此其逆变器单元的运行生活受到外部环境条件变化的强烈影响。的结果表明,该模型允许在非常低的计算时间下,可以量化在设计和非设计条件下电子设备的冷却性能和热负载的影响:由于主热交换器的有效性随着对外部环境的影响而在散发器,在散点和环境空气温度的变化方面,对组件的工作温度进行了监控;在这种情况下,模拟了一个简单的控制系统,以限制芯片的最高温度和风扇的气流。已经比较了两种类型的基于乙二醇的制冷剂流体的热性能。
摘要:在这项工作中,我们探索了镓作为一种有效的相变材料在热管理应用中的热性能。将镓制造的散热器的热存储和散热与传统的相变散热器进行了比较。比较结果显示,由于高密度、热导率和熔化潜热,相变过程中的温度可能降低 50 倍(80 K 对 1.5 K)。镓在瞬时加热时会产生浅热梯度,从而产生近乎等温的过程。使用集中总和参数的计算估计能够提供简单的模型来预测结果。基于镓的相变装置兼具体积小、整个装置温降小、制造和设计简单以及高能量存储应用等特点。DOI:10.1061/(ASCE)AS.1943-5525.0001150。本作品根据知识共享署名 4.0 国际许可证条款提供,https://creativecommons.org/licenses/by/4.0/ 。
2.机器热管理系统电池热管理系统可通过调节温度条件来安全有效地操作电池。高电池温度可以加速电池老化并带来安全风险,而低温会导致电池容量降低和充电/放电性能较弱。电池热管理系统可以通过散热过热或在太冷时提供热量来控制电池的工作温度。电池热管理系统(BTMS)对于以下原因至关重要:热管理系统调节电池组中的过量热量,以提高车辆性能和效率。BTM的主要作用是将电池温度保持在安全限制之内,以避免热跑道。冷却函数可最大程度地减少电池组中的过量热量,使温度保持在允许的范围内,并限制对周围细胞的不利影响。
电池热管理系统(BTM)的控制对于在炎热天气下电动汽车(EV)的热安全性,能源效率和耐用性至关重要。为了解决电池冷却优化问题,本文利用动态编程(DP)制定基于在线规则的控制策略。首先,建立了LIFEPO 4电池组的电热模型。在不同的速度轮廓和温度下提出了面向控制的BTMS模型。然后在DP框架中,将包括电池老化成本和冷却引起的电力成本组成的成本函数最小化,以获得最佳的压缩机功率。通过确定三个规则“快速冷却,缓慢冷却和温度维度维护”,这是一种基于规则的近乎基于规则的冷却策略,它使用尽可能多的再生能量来冷却电池组,以进行在线执行。仿真结果表明,在不同的操作条件下,提出的在线策略可以大大改善驾驶经济并减少电池降解,与离线DP相比,电池损失差异不足2.18%。最终提供了有关不同实际情况下电池冷却的建议。
摘要:本研究的主要目的是通过对钛酸锂离子电池内部产热的实验测量来说明钛酸锂离子电池组内的冷却机制。选择介电水/乙二醇(50/50)、空气和介电矿物油用于钛酸锂离子电池组的冷却。考虑了不同的流动配置来研究它们的热效应。在钛酸锂离子电池组中的锂离子电池单元中,采用了与时间相关的产热量,作为体积热源。假设电池组内的锂离子电池在所有模拟中具有相同的初始温度条件。通过 ANSYS 模拟锂离子电池组,以确定冷却系统和锂离子电池的温度梯度。模拟结果表明,流动布置和流体冷却剂类型会显著影响锂离子电池组的温度分布。