来自化石燃料的温室气体排放是世界温室气体总量的重要组成部分。4,5如果各国政府不进一步努力减少温室气体排放,预计到 2050 年温室气体排放量将上升 52%。4,6预计到 2100 年底地球平均地表温度将上升约 1.1°C 至 6.4°C,对环境和生态系统造成不可逆转的影响,并严重损害人类健康。4全球三分之一的温室气体排放和 40% 的能源消耗来自建筑行业。因此,建筑物在室内环境中使用大量能源用于日光照明、制冷和供暖。7-9 2018 年 11 月,欧盟委员会已承诺将温室气体排放量减少至少 40% 至 1990 年的水平,同时提高能源效率 32.5%,并将可再生能源增加到 32%。 10,11 为了实现这些目标,研究人员、建筑师和建筑工程师致力于减少建筑能耗、碳排放以及使用和储存可再生能源。7,9,12
摘要 —本文介绍了一种使用低全球变暖潜能值制冷剂 R1234yf 的两相流微通道热管理系统 (MTMS)。热测试载体 (TTV) 由嵌入基板的单个或多个热测试芯片制成,然后将其附着到 MTMS 上。该系统包括两个相同的铝制微通道散热器 (MHS),它们串联在冷却回路中,冷却回路还包括一个气体流量计、一个微型压缩机、一个冷凝器、一个节流装置和辅助测量组件。实验结果表明,热管理系统可以耗散 526 W/cm 2 的热通量,同时将结温保持在 120 °C 以下。对于具有更高结温(例如 175 °C)的 SiC MOSFET,预计当前系统耗散的热通量高达约 750 W/cm 2。详细分析了压缩机转速、节流装置开度、MHS 上的 TTV 布置、下游加热器对系统冷却性能的影响。研究表明,目前的
进化。[7–15] 有序的中观尺度特征除了满足其他生存相关需求外,还能够实现在恶劣环境条件下选择性和宽带反射太阳辐射和热能管理。[7–15] 从历史上看,它们引起了研究人员的极大兴趣。例如,几个世纪前胡克和牛顿就研究过这种结构。[16,17] 迈克尔逊在完成著名的光速测量多年后,研究了昆虫和鸟类的金属色彩和生动的反射。[18] 现代对自然界中可见光和红外光子反射起源的理解[1] 得益于直接纳米级成像以及光子晶体和超材料的理论建模和实验实现的最新发展。 [19] 虽然反射可见光谱范围内光的结构吸引了最多的研究兴趣,但人们也注意到,自然界中的许多光子结构可以在近红外范围内反射(超过 50% 的太阳辐射能量会转化为热量),通常用于鸟类、甲虫等的热管理。[2,4–6] 某些蚂蚁,例如 Cataglyphis bombycina,不仅利用宽带可见光和近红外反射(其银色外观的原因)在极端温度条件下生存,还通过辐射冷却散热。[20] 虽然最近已经开发出各种光子和超材料设计来稳健地控制选择性或宽带反射率并用于辐射冷却,但大自然不断通过揭示类似的热管理解决方案给我们带来惊喜。 [20–22] 此类解决体温调节问题的生物学方法(其中许多方法尚待发现和理解)对于启发仿生和生物衍生建筑材料的开发具有重要意义,而仿生和生物衍生建筑材料将是本文的重点。现代建筑的热管理技术需求在很大程度上与地球上不同生命形式在过去数亿年中面临的需求相似。在这段时间内,太阳一直是地球上最重要的能源,地球表面的环境温度也是如此(有一些地理和时间变化)。[20,22] 因此,自然界的热管理解决方案可用于开发更高效的建筑材料。各种光子反射器和热
通过热-水-力学 (THM) 耦合数值建模,研究了大型两用罐 (DPC) 中乏核燃料 (SNF) 地质处置的热管理。DPC 是专为 SNF 储存和运输而设计的容器,如果确定可用于永久地质处置,则可以提供具有成本效益的处置解决方案。然而,直接处置 DPC 的挑战之一是热管理,以避免工程屏障系统 (EBS) 过热,包括用作保护性缓冲器的膨润土回填料。模型模拟表明,使用经过热工程设计以实现高导热性的回填料可以将 EBS 温度降低到可接受的水平,以便在回填料隧道中处置大型废料罐。另一方面,使用高导热回填料不会降低处置库关闭几千年后可能出现的远场岩石峰值温度。这种较长期的母岩峰值温度会产生热孔隙弹性应力和地质力学变化,在储存库的热管理和设计中必须考虑到这些变化。
通过热-水-力学 (THM) 耦合数值建模,研究了大型两用罐 (DPC) 中乏核燃料 (SNF) 地质处置的热管理。DPC 是专为 SNF 储存和运输而设计的容器,如果确定其可用于永久地质处置,则可以提供一种具有成本效益的处置解决方案。然而,直接处置 DPC 的挑战之一是热管理,以避免工程屏障系统 (EBS) 过热,包括用作保护性缓冲器的膨润土回填料。模型模拟表明,使用经过热工程设计以实现高导热性的回填料可以将 EBS 温度降低到可接受的水平,以便在回填料隧道中处置大型废料罐。另一方面,使用高导热回填料不会降低处置库关闭几千年后可能出现的远场岩石峰值温度。这种较长期的母岩峰值温度会产生热孔隙弹性应力和地质力学变化,在处置库的热管理和设计中必须考虑到这些变化。
© 2019 Vertiv Co. 保留所有权利。Vertiv 和 Vertiv 徽标是 Vertiv Co. 的商标或注册商标。提及的所有其他名称和徽标均为其各自所有者的商品名、商标或注册商标。尽管已采取一切预防措施确保本文的准确性和完整性,但 Vertiv Co. 对因使用此信息或任何错误或遗漏而造成的损害不承担任何责任。规格如有变更,恕不另行通知。
用于纸基电子和热管理的混合石墨烯/碳纳米纤维蜡乳液 Xinhui Wu、Pietro Steiner、Thomas Raine、Gergo Pinter、Andrey Kretinin、Coskun Kocabas、Mark Bissett*、Pietro Cataldi* X Wu、P. Steiner、T. Raine、G. Pinter、A. Kretinin、C. Kocabas、M. Bissett、P. Cataldi 材料系,国家石墨烯研究所,曼彻斯特大学,牛津路,曼彻斯特,M13 9PL 英国电子邮件:pietro.cataldi@manchester.ac.uk;mark.bissett@manchester.ac.uk 关键词:柔性电子、环保电子、热管理、纤维素、多功能材料
为提高人体热舒适度并减少建筑供暖和制冷的能耗,强调人体及其局部环境能量管理的个人热管理正成为一个有前途的解决方案。先进的纺织品正在被发明和开发以有效调节人体与周围环境之间的热交换。本文回顾了用于个人热管理的先进纺织品的最新进展及其在能源效率方面的重要意义。我们将主要讨论具有工程特性的纺织品,这些纺织品旨在被动控制人体散热途径,主动变暖和/或冷却纺织品,以及根据外部刺激提供自适应个人热管理能力的响应性纺织品。本文还提出了对该领域重要挑战和机遇的讨论。
摘要 温度对锂离子电池的性能、寿命和安全性有至关重要的影响。因此,了解单个电池单元和电池组内的热量产生和耗散对于制定适当的热管理策略至关重要。关键挑战之一是电池单元的界面传热难以量化。采用稳态绝对法和瞬态激光闪光扩散率法分别测量电池层堆栈和单个电池层的热导率。结果表明,闪光扩散率法在横向和平面内方向均具有更高的热导率。差异主要是由界面热阻引起的,因此可以通过稳态和瞬态测量来估算。为了研究界面热传输对单个电池级别以外的影响,使用了多物理场电池模型。该模型建立在电池组的多尺度多领域建模框架之上,该框架考虑了多种物理现象之间的相互作用。通过数值实验量化了使用热管理材料的电池模块的好处。在热失控事件中,发现界面热阻可以通过显著减少电池之间的热传递来缓解电池模块中的热失控。关键词:锂离子电池、热管理、界面热阻、多物理场建模术语 T 温度 k 热导率 α 热扩散率 ρ 密度 C p 热容量 li 厚度