2 Université Gustave- Eiffel, Laboratoire MSME UMR CNRS 8208, Université Paris-Est Marne-La-Vallée, Marne-La-Valle 8 F-77454, France 9 10 *Corresponding author: moussa.elidi@gmail.com 11 12 Abstract: This paper investigates the thermal management performance of a novel system using phase change material 13 (PCM) composite for锂离子电池的细胞尺度。开发了一个实验平台来研究锂离子细胞中的热现象14。该系统是根据热通量测量设计的。细胞嵌入PCM复合15材料中。将组件放在3D打印制造的铝制模具中。评估了添加金属16泡沫和强制对流的影响。结果表明,所提出的系统允许在最佳工作温度(25°C)周围保持Li-17离子电池的温度。还发现,添加铝泡沫可以对细胞进行更高的18效热管理。19 20关键字:相变材料(PCM),电池热管理系统(BTMS),金属泡沫,锂离子21 22命名法23
摘要:数十年来,液体燃料一直是内燃机(ICE)的主要能源。但是,锂离子电池(LIB)已取代了环保车辆的冰,并减少了化石燃料的依赖性。本文重点介绍了电池热管理系统(BTM)的比较分析,以保持工作温度在15-35℃的范围内,并防止热失控和高温梯度,从而增加LIB生命周期和性能。建议的方法是将生物柴油用作发动机饲料和冷却液。使用ANSYS-FLUENT CFD软件工具模拟3S2P LIB模块。将四个选择性介电生物柴油用作冷却剂,即棕榈,卡兰加,贾特罗帕和玛哈油。与BTMS(主要是空气和3M NOVEC)中的常规冷却剂相比,生物柴油燃料已被证明是将LIB温度保持在最佳工作范围内的冷却剂。例如,与3M NOVEC相比,使用棕榈生物柴油可以轻巧的BTM轻巧43%,并且同样保持BTMS性能。
摘要 - 本文专用于在锂离子电池单元的规模上使用PCM金属泡沫复合材料设计最佳热管理系统。研究了PCM和PCM金属泡沫复合材料吸收由锂离子细胞产生的热量的能力,开发了数学和数值模型。该建模基于从CERTES实验室中开发的新实验测试工作台进行的表征实验收集的数据。为了表征锂离子细胞的热行为,开发的二维数值模型集成了Brinkmann-Forchheimer扩展的Darcy方程,焓孔隙率法和二元能量方程。数值研究是通过耦合MATLAB和COMSOL多物理学进行的。结果表明,添加铝泡沫可以对细胞进行更有效的热管理。优化研究表明,低估厚度(所需的PCM质量)会导致极端温度。还发现,额外的PCM添加对细胞表面温度没有很大影响。
高级工程材料,用于增强锂离子电池的热管理和热安全性:评论Yang,S.,Lin,J.,Zhang,Z.,Zhang,C.,Zheng,X.,X.,Xie,W.,Wang,L.出版了在考文垂大学的存储库原始引用:Yang,S,Lin,J,Zhang,Z,Zhang,Zhang,C,Zheng,X,X,Xie,W,W,Wang,L,Chen,S&Liu,X 2022,'2022年,'高级工程材料,用于增强热力管理和热量研究LITH-IN-IN consecties的高级工程材料:A Riffe consexties:A A Revies,wol,wol,wol,wol,wol,wol。10, 949760. https://dx.doi.org/10.3389/fenrg.2022.949760 DOI 10.3389/fenrg.2022.949760 ESSN 2296-598X Publisher: Frontiers Media This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY).允许在其他论坛上使用,分发或复制,前提是原始作者和版权所有者被记住,并且根据公认的学术实践,请引用本期刊中的原始出版物。不允许使用,分发或复制,不符合这些条款。
电动汽车已成为国家战略重点,对未来交通运输、工业发展、能源安全、空气质量改善等都具有重要意义。发展高效、低碳的热管理技术已成为打造更安全、舒适、节能、环保的电动汽车的重要方面之一。由于冬季发动机热回收功能缺失,电池、电机、电控设备对温度的敏感性较高,先进的热管理技术对电动汽车的续航里程、安全性、动力性、寿命和可靠性的影响越来越重要。目前,电动汽车热管理技术的发展主要集中在高效电池热管理、低碳热系统技术、集成节能热系统和智能控制技术等方面,旨在打造功能集成、结构模块化、控制智能化的绿色高效系统。在此,我要向中国科学院何雅玲院士表示诚挚的感谢,感谢她提供平台,邀请我们组织汽车热管理专题讨论。本专题主要介绍该领域的最新科技进展。我们很高兴呈现了六篇高质量的文章,涵盖了低碳热系统技术、高效系统关键部件、先进热交换技术以及高效电池热管理技术等主题。这些论文突出了与制冷剂替代品相关的最值得关注的系统和部件技术,以及与电池热管理相关的最新技术。本专题的工作为汽车热管理前沿技术的未来发展提供了宝贵的见解和方向。我衷心感谢所有作者分享他们的研究和发现,并感谢他们为本专题付出的时间和精力。我希望它能帮助读者更深入地了解电动汽车热管理,并激励更多的研究人员探索这一重要领域。随着学术界的日益关注,我们希望加速汽车热管理技术的发展,解决电动汽车当前面临的技术挑战,促进其快速而强劲的增长。最后,我要向审稿人、编辑和出版制作团队表示深深的谢意,感谢他们的辛勤工作、坚定不移的支持、奉献和热情。没有他们的努力,本专题的成果和成功就不可能实现。
本研究旨在确定与太阳能电动汽车中物联网一起应用热管理系统的可靠性。在常规电动汽车或驾驶能源的人来自汽油燃料中;应用的热管理系统主要用作内燃机的冷却剂。但是,对于电动汽车,热管理系统可用于主要组件,例如将太阳能模块能量转换为电力和电池的控制器。使用六个直流风扇进行热管理系统的空气冷却的测试结果产生了两种来自太阳能模块的电池充电条件的变化,即修剪器恒定电流升级充电器的25和400圈的变化。拟议的热管理系统的测试结果表明,最高的加速充电器温度为35.75°C,电压为57.64 V,而变化为25圈。电池电压和温度上的测试结果表明,在25发子弹变化时,电池温度最高的电池温度达到31.75°C,电压为57.3 V。
铜水微型热管和 k-core 封装石墨热管理技术已开发用于高性能 ASIC(倒装芯片和微处理器)的直接热管理,并已成功获得太空飞行状态的资格。该技术可实现高性能、组件级直接冷却,并增强从底盘接口到空间散热器的底盘级热扩散。该技术使未来电信卫星有效载荷的散热发生了重大变化。建造了一个由三个代表性面包板底盘组成的资格测试车辆,带有微型热管热管理系统 (TMS),用于代表性倒装芯片微处理器热负荷的直接热管理以及与底盘级 k-Core 扩散器的热连接。飞行演示测试包括真空环境中的性能测试、热特性、老化和寿命测试以及热机械测试。微型热管和 k-Core TMS 技术已达到 TRL 8,可部署在直接微处理器热管理和热链接应用中,以克服传导传热的局限性。本文概述了该技术、资格测试计划和资格测试数据。
预计,通过实施国家补贴和补助机制来促进供应链增长和批量生产,也可以实现降低成本的目标。例如,在美国,美国能源部利用高达 70 亿美元的公共资金创建了区域清洁氢中心计划 (H2Hubs) 6 。该计划将用于在全美建立七个区域清洁氢中心,为国家清洁氢网络奠定基础,这将为经济多个部门的脱碳做出重大贡献。这些中心旨在建立制造业和基础设施,以促进规模经济。
利用人工缺陷技术,我们可以调整许多二维 (2D) 层状材料的能带结构和传输特性。一种原型材料系统是反点石墨烯片,其中周期性孔隙是使用纳米级聚焦离子或电子束制成的。在这里,我们研究了具有不同孔隙半径和孔隙间距的反点石墨烯样品的电导率、热电势以及冷却和制冷的有效速率。我们使用了一种考虑传输对载流子能量的敏感性的计算方法,可用于描述扩散、弹道和量子跳跃状态下的弹性和非弹性散射。我们发现,与一些传统方法相比,我们使用新计算方法得到的结果与实验数据更加一致。同样有趣的是,优化的冷却和制冷的有效速率对孔隙间距和孔隙半径的分布变化非常稳健,这意味着易于工业化和廉价制造。同样的分析和研究也可以扩展到许多其他层状材料,包括过渡金属二硫属化物(TMD)、蓝色磷烯和碲烯。
热管理对于锂离子电池的安全性、性能和耐用性至关重要,锂离子电池在消费电子产品、电动汽车 (EV)、航空航天和电网级储能中无处不在。随着电动汽车在全球范围内的大规模普及,锂离子电池越来越多地在低温、高温和快速充电等极端条件下使用。此外,由电池热失控引起的电动汽车起火已成为电动汽车广泛普及的主要障碍。这些极端条件对热管理提出了巨大挑战,需要采取非常规策略。电池的热、电化学、材料和结构特性之间的相互作用进一步增加了挑战,但也为开发创新的热管理策略提供了机会。本综述分析了极端条件下热管理面临的挑战。然后,重点介绍了两个方向的进展。一个方向是基于传热原理改进电池热管理系统,该系统通常位于锂离子电池的外部。另一个方向是设计新型电池结构,这些结构通常位于锂离子电池内部,例如带有嵌入式传感器和执行器的智能电池。后一种方法可以大大简化甚至消除极端条件下对电池热管理的需求。建议进行整合这两种方法的新研究。[DOI:10.1115/1.4056823]