摘要:基因组精简是微生物进化过程中的自然过程,已成为生成理想底盘细胞用于合成生物学研究和工业应用的常用方法。然而,由于基因操作非常耗时,系统性基因组减少仍然是蓝藻生成此类底盘细胞的瓶颈。Synechococcus elongatus PCC 7942 是一种单细胞蓝藻,是系统性基因组减少的候选者,因为其必需基因和非必需基因已通过实验确定。本文报告,23 个超过 10 kb 的非必需基因区域中至少有 20 个可以被删除,并且可以实现这些区域的逐步删除。生成了一个七重缺失突变体(基因组减少了 3.8%),并研究了基因组减少对生长和全基因组转录的影响。在祖先三重至六重突变体( b 、 c 、 d 、 e1 )中,与野生型相比,上调的基因数量越来越多(最多 998 个),而在七重突变体( f )中上调的基因数量略少(831 个)。在来自五重突变体 d 的另一个六重突变体( e2 )中,上调的基因数量要少得多(232 个)。在本研究的标准条件下,突变体 e2 的生长率高于野生型、e1 和 f 。我们的结果表明,大量减少蓝藻基因组以生成底盘细胞和进行实验进化研究是可行的。
保留所有权利。未经许可不得重复使用。 (未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。
图 1:CReasPy-Fusion 方法的实验流程示意图。步骤 1(借用 CReasPy-Cloning 策略,左栏):用两个质粒转化酵母,从而表达 Cas9 核酸酶和 gRNA。步骤 2(借用 Fusion Cloning 策略,右栏):在线性重组模板(由酵母元件 CEN-HIS3 组成,带有或不带有 ARS,两侧是与目标基因座两侧相同的两个重组臂和一个抗生素抗性标记)存在下,将预装 pCas9 和 pgRNA 的酵母细胞与支原体细胞接触。步骤 3:进入酵母细胞后,目标基因组被 Cas9 切割,随后由酵母同源重组系统使用提供的线性 DNA 片段作为模板进行修复。因此,细菌基因组现在包括插入到精确位置的酵母元素,并由酵母作为着丝粒质粒携带。
van thien chi nguyen 1.2#,在hieu nguyen 1.2#,nhat tan doan 1,2,thi quynh pham 1,2,giang thi huong nguyen 1.2,thanh thanh dat dat ngat ngat nguyen 1.2 U Thinh Nguyen 3,Trieu Vu Nguyen 7,Hue Hanh Nguyen 1.2,Le Anh Khoa: 3,Minh Tran先生3,Viet Hai Nguyen 3,Vu Tuan anh nguyen 3,Le Minh Quoc Ho 3,Quang dat Tran 3,Thu thu thu thu thu thu thu th dat ho 4,bao toan nguyen 4,thanh vo nguyen 4,thanh vo nguyen 4, Thoang Nai 4,Thuy Trang Tran 4,我的Hoang Truong 4,Thanh Huong 4 Phuong Thi Bach 5.6,Van Vu Kim 5,6,Anh Pham 5.6,Duc Huy Tran 3,Trinh Ngoc An Le 3,Truong Vinh Ngoc Pham 3,Minh Triet Le 3,Dac Ho vo 1,2 I Trang Tran 1.2,Vu Uyen Tran 1,2,Minh Phong Le 1,2,Thi Van Phan Nguyen,Luang 1.2,1.2 1,2,van Thinh高9,Thanh Thuy Thi Do 2,Dinh Kiet Truong 2,挂在Tang 1,2,Hoa Giang 1,2,Hoai-Jghia Nguyen 1.2,Minh Duy Phan 1,2,*,*,Le Son Tran 1,2,*,*
宿主粘膜屏障拥有一系列防御分子,以维持宿主-微生物体内平衡,例如抗菌肽和免疫球蛋白。除了这些已证实的防御分子外,我们最近还报道了人类口腔角质形成细胞与具核梭杆菌 (Fn) 之间的小 RNA (sRNA) 介导的相互作用,Fn 是一种口腔致病菌,在口腔外疾病中的影响越来越大。具体而言,在 Fn 感染后,口腔角质形成细胞会释放 Fn 靶向 tRNA 衍生的 sRNA (tsRNA),这是一类具有基因调控功能的新兴非编码 sRNA。为了探索 tsRNA 的潜在抗菌活性,我们对 Fn 靶向 tsRNA 的核苷酸进行了化学修饰,并证明所得的 tsRNA 衍生物(称为 MOD-tsRNA)在纳摩尔浓度范围内无需任何运载工具即可对各种 Fn 型菌株和临床肿瘤分离株表现出生长抑制作用。相反,相同的 MOD-tsRNA 不会抑制其他代表性口腔细菌。进一步的机制研究揭示了 MOD-tsRNA 在抑制 Fn 中的核糖体靶向功能。总之,我们的工作提供了一种通过共同选择宿主衍生的细胞外 tsRNA 来靶向致病菌的工程方法。
图 1:CReasPy-Fusion 方法的实验流程示意图。步骤 1(借用 CReasPy-Cloning 策略,左栏):用两个质粒转化酵母,从而表达 Cas9 核酸酶和 gRNA。步骤 2(借用 Fusion Cloning 策略,右栏):在线性重组模板(由酵母元件 CEN-HIS3 组成,带有或不带有 ARS,两侧是与目标基因座两侧相同的两个重组臂和一个抗生素抗性标记)存在下,将预装 pCas9 和 pgRNA 的酵母细胞与支原体细胞接触。步骤 3:进入酵母细胞后,目标基因组被 Cas9 切割,随后由酵母同源重组系统使用提供的线性 DNA 片段作为模板进行修复。因此,细菌基因组现在包括插入到精确位置的酵母元素,并由酵母作为着丝粒质粒携带。
应用Illumina的Nebnext Ulta DNA库准备套件包含酶和缓冲液,是将少量DNA输入转换为Illumina Platform(Illumina,Inc)上下一代测序的索引库的理想选择。Nebnext Ultra DNA库的工作流程的Illumina的Prep套件非常友好且快速,动手的时间很少。这些组件中的每一个都必须通过严格的质量控制标准,并且无论是单独还是作为一组试剂。
在单分子,实时(SMRT)测序中,通过单个DNA聚体在DNA链复制过程中实时监测单个核苷酸,跟踪掺入multicolor荧光标记的核苷酸。[3A]通过扩散过程将要测序的DNA模板加载到100 nm直径的纳米线的底部,称为零模式波导(ZMW),这自然有利于捕获由于井的大小约束而捕获较短的DNA分子。[3b,4]为了从长片段中获取读数,使用尺寸选择系统,其中短片段通过凝胶电泳去除。[5]总体而言,在SMRT测序方案中需要高输入DNA量(> 3 µg每1 GB基因组),[5,6],尽管可提供来自亚纳米图DNA的库制备方法[7] [7]来自低输入的这种低输入量的DNA负载限制可有效读取来自低输入的有效读数。需要新平台有效地将各种尺寸的DNA碎片加载到没有长度偏差的ZMW中,并且从超值输入(PICOGRAMPOMPOM级别)导致了几种类型的电气致命ZMW的发展,包括纳米孔ZMWS(NZMWS)(NZMWS)[8]和POOL ZMWS(POOL ZMWS)(POROUL ZMWS(POLOUL ZMWS))(POROUL ZMWS)(POLFOOL ZMWS)。[9]在这些设备中,跨设备的电压应用导致离子流过ZMWS的多孔碱基,从而导致电动介导的生物分子(DNA,RNA和蛋白质)的电动介导的负载。与基于扩散的负载相反,电力学介导的负载功能低尺寸偏差和亚纳米革兰氏DNA输入要求。在该设备中,波导在其底部嵌入了电极,可以使电压诱导的DNA分子捕获到EZMWS中。但是,这些设备都依赖于独立的超薄膜,这在某种程度上承诺了设备的寿命并增加背景光致发光。为了克服这些问题,我们在这里脱颖而出,电光ZMWS(EZMWS),这是一种新型的电气可致动ZMW的设计,其中不需要独立的membranes。我们的新设备功能
裂谷热病毒 (RVFV) 是一种新出现的虫媒病毒,可影响反刍动物和人类。裂谷热病毒在非洲和阿拉伯半岛引起严重且反复的疫情,并且很有可能在新的地区出现。尽管有多种 RVFV 兽用疫苗可用于流行地区,但目前尚无获准用于人类的疫苗;因此,需要开发和评估新疫苗。在此,我们报告了一种 RVFV 减毒活重组疫苗候选物,该疫苗基于先前描述的有条件许可的 MP12 疫苗的基因组重组。开发减毒活 RVFV 疫苗有两种通用策略,一种是连续传代野生型 RVFV 菌株以选择减毒突变体,例如 Smithburn、Clone 13 和 MP12 疫苗株。第二种策略是利用反向遗传学通过在病毒基因组中引入缺失或插入来减毒 RVFV 菌株。本报告中描述的新型候选疫苗包含一个双片段基因组,该基因组缺少病毒中片段 (M) 和两个毒力基因(非结构性小片段和非结构性中片段)。该候选疫苗名为 r2segMP12,在杂交 CD-1 小鼠中评估了其产生 RVFV 中和抗体的能力。将 r2segMP12 候选疫苗诱导的免疫反应与 rMP12 亲本株疫苗诱导的免疫反应直接进行比较。我们的研究表明,在相同疫苗接种滴度下,使用 10 5 个空斑形成单位的 r2segMP12 候选疫苗单次免疫可引发比 rMP12 疫苗更高的中和抗体反应,且无需加强。