a 哈尔滨工业大学计算机科学与技术学院,哈尔滨,中国 b LINEACT CESI,里昂 69100,法国 c 埃法特大学电气与计算机工程系,吉达 22332,沙特阿拉伯 d Persistent Systems Limited,那格浦尔,印度 e AGH 科技大学生物控制论与生物医学工程系,克拉科夫,波兰 f 克拉科夫理工大学计算机科学与电信学院计算机科学系,华沙 24,31-155,克拉科夫,波兰 g 波兰科学院理论与应用信息学研究所,Ba ł tycka 5,44-100,格利维采,波兰 h EIAS 数据科学实验室,苏丹王子大学计算机与信息科学学院,利雅得 11586,沙特阿拉伯 i 梅努菲亚大学理学院数学与计算机科学系,32511,埃及j 埃及梅努菲亚大学计算机与信息学院信息技术系
在细胞的监督分类中优化特征提取和分类器的组合组合Xhoena polisi duro 1,2*,Arban UKA 2,Griselda alushllari 2,Albana Ndreu Halili 3,Dimitrios A. Karras A. Karras A. Karras 2,Nihal Engin vrana vrana 4 1 Informatics obs s. noli oblia,“ fan nori”,koria,koria,koria,korica,korica,korica,korka,korka,“ korcua”。 xpolisi@epoka.edu.al(X.P.D.)。2埃波卡大学计算机工程系,阿尔巴尼亚蒂拉纳市; auka@epoka.edu.al(a.u.)galushllari@epoka.edu.al(G.A。)dkarras@epoka.edu.al(d.a.k.)3西巴尔干大学医学系,阿尔巴尼亚提拉娜; albana.halili@wbu.edu.al(a.n.h。) 4法国斯特拉斯堡的Spartha Medical; evrana@sparthamedical.eu(N.E.V.) 摘要:医学领域的发展已经开放了在个性化患者层面进行分析的机会。 可以进行的重要分析之一是对工程材料的细胞反应,最合适的非侵入性方法是成像。 这些细胞的图像是未染色的Brightfield图像,因为在存在生物材料和流体的情况下,它们是从多参数微流体室获取的,这些室可能会随着时间的流逝而改变光路的长度,因为细胞的健康状态被监测。 这些实验条件导致具有独特照明,纹理和噪声频谱的图像数据集。 本研究通过将特征提取体系结构和机器学习分类器结合起来,探讨了监督细胞分类的优化,并重点介绍了生物材料风险评估中的应用。 1。 简介3西巴尔干大学医学系,阿尔巴尼亚提拉娜; albana.halili@wbu.edu.al(a.n.h。)4法国斯特拉斯堡的Spartha Medical; evrana@sparthamedical.eu(N.E.V.)摘要:医学领域的发展已经开放了在个性化患者层面进行分析的机会。可以进行的重要分析之一是对工程材料的细胞反应,最合适的非侵入性方法是成像。这些细胞的图像是未染色的Brightfield图像,因为在存在生物材料和流体的情况下,它们是从多参数微流体室获取的,这些室可能会随着时间的流逝而改变光路的长度,因为细胞的健康状态被监测。这些实验条件导致具有独特照明,纹理和噪声频谱的图像数据集。本研究通过将特征提取体系结构和机器学习分类器结合起来,探讨了监督细胞分类的优化,并重点介绍了生物材料风险评估中的应用。1。简介分析了三种细胞类型(A549,BALB 3T3和THP1)的Brightfield显微镜图像,以评估Inception V3,Squeeze Net和VGG16架构与分类器与包括KNN,决策树,随机森林,Adaboost,Adaboost,Neural Networks和Natan bayes的分类器配对的影响的影响。使用信息增益降低维度,以提高计算效率和准确性。使用不同参数的Butterworth过滤器用于平衡图像特征和降噪的增强,从而在某些情况下提高了分类性能。实验结果表明,与神经网络配对时,VGG16体系结构可实现通过不同指标衡量的更高分类精度。与未经过滤的数据集相比,使用Butterworth过滤器时的精度提高了,并且各种Butterworth滤波器之间的差异表明了优化这些类型图像的过滤器参数的重要性。关键字:生物材料风险评估,细胞图像分类,分类器,特征提取,个性化医学,监督分类。
教学加利福尼亚大学圣地亚哥大学本科课程CSE 8B编程和计算问题解决简介II,2020,2021,2021,2022(春季和秋季),2023,2023,2025 CSE 11编程和计算问题解决简介解决简介:解决速度:加速速度,2024(Spring and Fall),2024(Spring and Fall)CSE 15L软件工具和技术分析,春季和2019年,2019年(冬季),2019年(冬季),2019年,冬季(冬季),企业,2019年冬季cers和2019 of Algorithms , 2018 CSE 152 Introduction to Computer Vision , 2015, 2016, 2017, 2018 CSE 152A Introduction to Computer Vision I (broad introduction), 2021, 2024 CSE 166 Image Processing , 2016, 2017, 2019, 2020 (spring and fall), 2022, 2023 (winter and fall) CSE 167 Computer Graphics , 2018, 2020 Graduate Courses CSE 252A Computer Vision I (comprehensive简介),2014,2015,2015,2016,2019,2021,2022,2023,2023,2025 CSE 252B计算机愿景II(成像几何),2014,2014,2015,2016,2017,2018,2019,2019,2021,2021,2021,2022,2022,2023,2023,2023,2024 CSE 252C选择了视觉和学习的主题291),2021(作为CSE 291),2022,2023,2024
抽象的纹理分析用于非常广泛的场和应用,从纹理分类(例如,用于遥感)到分割(例如,在生物医学成像中),通过图像合成或模式识别(例如,用于图像inpainting)。对于这些图像处理过程中的每一个,首先,必须从原始图像中提取描述纹理属性的象征性特征。在过去的几十年中,已经提出了各种特征提取方法。每个人都有其优点和局限性:其中一些的性能不是通过翻译,旋转,affin和perspective变换来修改的;其他人的计算复杂性低;其他人再次容易实施;等等。本文对纹理特征提取方法进行了全面的调查。后者分为七个类:统计方法,结构方法,基于转换的方法,基于模型的方法,基于图形的方法,基于学习的方法和基于熵的方法。对于这七个类中的每种方法,我们介绍了概念,优势和缺点,并给出了应用程序的示例。这项调查使我们能够确定两类方法,特别是在将来值得关注的方法,因为它们的表现似乎很有趣,但是他们的详尽研究尚未进行。
1 1智能医学电子电子学中心,电子工程系,信息科学技术学院,富丹大学,上海,上海,2号,2 2号电气工程系,纳马尔大学米安瓦利,米安瓦利,米安瓦利,巴基斯坦,巴基斯坦3号上海,中国上海,中国5号新生儿学系,中国上海,上海,中国,伯明翰伯明翰大学电子,电气和系统工程系6,英国伯明翰大学,7人类现象学院,上海,上海,上海,中国,中国,8号,生物培训学院1智能医学电子电子学中心,电子工程系,信息科学技术学院,富丹大学,上海,上海,2号,2 2号电气工程系,纳马尔大学米安瓦利,米安瓦利,米安瓦利,巴基斯坦,巴基斯坦3号上海,中国上海,中国5号新生儿学系,中国上海,上海,中国,伯明翰伯明翰大学电子,电气和系统工程系6,英国伯明翰大学,7人类现象学院,上海,上海,上海,中国,中国,8号,生物培训学院
为了推断意图,脑机接口必须提取能够准确估计神经活动的特征。然而,信号质量随时间推移而下降,阻碍了使用特征工程技术恢复功能信息。通过使用植入三位人类参与者大脑皮层的电极阵列记录的神经数据,我们在此展示了卷积神经网络可用于将电信号映射到神经特征,方法是联合优化特征提取和解码,但所有电极必须使用相同的神经网络参数。在这三位参与者中,神经网络在所有指标的光标控制任务中都带来了离线和在线性能改进,优于宽带神经数据的阈值交叉率和小波分解(以及其他特征提取技术)。我们还表明,经过训练的神经网络无需修改即可用于新的数据集、大脑区域和参与者。
b'摘要\xe2\x80\x94准确估计充电状态 (SOC) 对于储能应用中电池管理系统 (BMS) 的有效和相对运行至关重要。本文提出了一种结合卷积神经网络 (CNN)、门控循环单元 (GRU) 和时间卷积网络 (TCN) 的新型混合深度学习模型,该模型结合了 RNN 模型特征和电压、电流和温度等非线性特征的时间依赖性,以与 SOC 建立关系。时间依赖性和监测信号之间的复杂关系源自磷酸铁锂 (LiFePO4) 电池的 DL 方法。所提出的模型利用 CNN 的特征提取能力、GRU 的时间动态建模和 TCN 序列预测强度的长期有效记忆能力来提高 SOC 估计的准确性和鲁棒性。我们使用来自 In\xef\xac\x82ux DB 的 LiFePO4 数据进行了实验,经过处理,并以 80:20 的比例用于模型的训练和验证。此外,我们将我们的模型的性能与 LSTM、CNN-LSTM、GRU、CNN-GRU 和 CNN-GRU-LSTM 的性能进行了比较。实验结果表明,我们提出的 CNN-GRU-TCN 混合模型在 LiFePO4 电池的 SOC 估计方面优于其他模型。'
Pradesh) 摘要 本文探讨了使用小波变换技术在运动想象 (MI) 任务中对 EEG 信号进行特征提取和分类,重点关注事件相关去同步 (ERD) 和事件相关同步 (ERS) 现象。该研究强调了离散小波变换 (DWT) 相对于连续小波变换 (CWT) 的有效性,因为它在处理时间上更高效,并且能够紧凑地表示信号。根据能量压缩特性和捕获与 MI 相关的信号特征的能力对各种小波函数进行了评估,包括 Daubechies 和双正交小波。选择在近似带中表现出最高能量集中的小波进行进一步分析。使用这些选定的小波从 EEG 信号中提取特征,并使用统计和 (HoS) 度量(例如均值、方差、偏度和峰度)进行表征。然后使用这些特征来训练具有不同核函数的支持向量机 (SVM) 分类器。分类结果显示,小波 J db10 和 J bior6.8 的准确率最高,表明它们最适合 MI 任务中的 EEG 信号分析。研究结果表明,优化的小波特征提取与先进的机器学习技术相结合,具有提高脑机接口 (BCI) 系统分类性能的潜力。
摘要工业系统的威胁格局正在快速发展,网络攻击变得越来越复杂,有针对性和动机。这种情况应该引起许多担忧,因为工业控制系统与互联网以及网络物理系统和工业互联网的扩散越来越多。在这些情况下,对攻击的准确检测至关重要。鉴于复杂性,特殊性和网络攻击的确定,物联网和工业系统中安全风险环境的迅速性是引起人们关注的原因。由于工业控制系统与互联网的扩展以及广泛采用网络物理系统的扩展,此问题变得尤为问题。在这项工作中,我们引入了一种新的方法来改善特征提取过程。该解决方案显示了多功能性,不仅可以作为识别网络攻击的独立工具运行,而且更重要的是,作为预处处理用于与人工智能模型集成的原始数据包数据的宝贵工具。提出的解决方案是开发出来的,重点是满足工业部门的特定网络安全需求。这种方法是由工业景观的当务之急驱动的,在这种情况下,保护关键系统免受网络威胁至关重要。此外,我们的系统在工业数据集上进行了测试,该数据集证明了我们在工业环境中特殊背景下解决方案的适用性和功效。这些测试的结果有助于验证我们的方法。
讨论了抽象的二氧化碳去除(CDR),以抵消残留的温室气体排放,甚至逆转气候变化。符合巴黎协定的“远低于2℃”的升温目标的政府间跨政府间小组的所有排放场景包括CDR。海洋碱度增强(OAE)可能是一种可能的CDR,其中人造碱度增加了海洋的碳吸收。在这里,我们研究了OAE对两个观察到的大型扰动参数集合中建模的碳储层和通量的影响。oae在技术上是成功的,并将其作为SSP5-3.4温度过冲场景中的额外CDR部署。涉及大气CO 2反馈的权衡导致碱度驱动的大气CO 2降低-0.35 [ - 0.37至-0.37至-0.33]摩尔碱度添加(技能加权平均值和68%C.I.)。已实现的大气CO 2降低以及相应的效率,比直接碱度驱动的海洋吸收的增强小两倍以上。碱度驱动的海洋碳吸收部分被从陆地生物圈中释放出来的碳和降低的海洋碳汇所抵消,以响应OAE下的大气中降低的大气CO 2。在第二步中,我们使用CO 2峰模拟中的Bern3D-LPX模型在理想化的情况下解决表面空气温度变化(∆ SAT)的滞后和时间滞后,其中∆ SAT增加到〜2°C,然后根据CDR的结果下降至〜1.5℃。∆ SAT滞后于18 [14-22]年的CO 2降低,这取决于各个集合成员的平衡气候灵敏度。这些折衷和滞后是地球系统对大气CO 2变化的响应的固有特征,因此对于其他CDR方法同样重要。