我们提出了一种方案,利用数值“精确”分层运动方程 (HEOM) 中的准静态亥姆霍兹能量,评估在时间相关外力作用下与热浴耦合的系统的热力学变量。我们计算了不同温度下与非马尔可夫热浴强耦合的自旋系统产生的熵。我们表明,当外部扰动的变化足够缓慢时,系统总会达到热平衡。因此,我们基于 HEOM 计算了等温过程的玻尔兹曼熵和冯诺依曼熵,以及准静态平衡系统的各种热力学变量,例如内部能量、热量和功的变化。我们发现,尽管玻尔兹曼和冯诺依曼情况下的系统熵作为系统-浴耦合强度的函数的特征相似,但总熵产生的特征完全不同。在玻尔兹曼情况下,总熵产生总是正的,而在冯·诺依曼情况下,如果我们选择整个系统的热平衡状态(未分解的热平衡状态)作为初始状态,则总熵产生为负。这是因为冯·诺依曼情况下的总熵产生没有适当考虑系统-浴相互作用的熵贡献。因此,必须使用玻尔兹曼熵来研究完全量子状态下的熵产生。最后,我们检查了 Jarzynski 等式的适用性。
摘要目的脑动脉瘤 (也称为颅内动脉瘤或脑动脉瘤) 是全世界成人中最常见的脑血管疾病之一,由脑动脉薄弱引起。脑动脉瘤最有效的治疗方法是介入放射治疗,这极大地依赖于放射科医生的技术水平。因此,准确检测和有效治疗脑动脉瘤仍然是重要的临床挑战。事实上,一个可靠的建模和可视化环境来测量和显示体内血流模式可以洞察脑动脉瘤的血流动力学特征。在这项工作中,我们引入了一种脑血流模拟和实时可视化的流程,涵盖了从医学图像采集到实时可视化和操纵的所有方面。方法我们开发并使用了改进版本的 HemeLB 作为流程的主要计算核心。 HemeLB 是一款针对稀疏和复杂几何结构优化的大规模并行格子玻尔兹曼流体求解器。该管道的可视化组件基于在支持 CUDA 的 GPU 核心上实现的射线行进方法。
抽象背景:Boltzmann机器是基于能量的模型,已显示出对进化相关蛋白质和RNA家族的域的准确统计描述。它们是根据局部偏见的参数化,该局部偏向残留物保守性,以及对残基之间的上皮共进化的成对项。从模型参数中,可以提取目标域的三维触点图的准确预测。最近,这些模型的准确性也已根据它们在预测突变效应和在计算机功能序列中产生的能力方面进行了评估。结果:我们对Boltzmann机器学习的自适应实现,ADABMDCA通常可以应用于蛋白质和RNA家族,并根据输入数据的复杂性以及用户需求完成了几个学习设置。该代码可在https://github。com/anna-pa-m/adabm DCA上完全获得。举例来说,我们已经学习了三台Boltzmann机器模式 - Kunitz和beta-lactamase2蛋白结构域以及TPP-riboswitch RNA结构域。结论:ADABMDCA学到的模型与最先进的技术在此任务中获得的模型相当,就推论触点图的质量以及合成生成的序列而言。此外,该代码同时实现平衡和平衡性学习,这可以在平衡时进行准确而无损的训练,并在统一时间上过于态度,并允许使用基于信息的标准来修剪不相关的参数。
摘要:机器学习对科学、技术、健康以及计算机和信息科学等多个领域产生了重大影响。随着量子计算的出现,量子机器学习已成为研究复杂学习问题的一种新的、重要的途径。然而,关于机器学习的基础存在着大量的争论和不确定性。在这里,我们详细阐述了一种称为玻尔兹曼机的通用机器学习方法与费曼对量子和统计力学的描述之间的数学联系。在费曼的描述中,量子现象源于路径的优雅加权和(或叠加)。我们的分析表明,玻尔兹曼机和神经网络具有相似的数学结构。这允许将玻尔兹曼机和神经网络中的隐藏层解释为路径元素的离散版本,并允许对机器学习进行类似于量子和统计力学的路径积分解释。由于费曼路径是对干涉现象和与量子力学密切相关的叠加原理的自然而优雅的描述,这种分析使我们能够将机器学习的目标解释为通过网络找到路径和累积路径权重的适当组合,从而累积地捕获给定数学问题的 x 到 y 映射的正确属性。我们不得不得出结论,神经网络与费曼路径积分有着天然的联系,因此可能提供了一种被视为量子问题的途径。因此,我们提供了适用于玻尔兹曼机和费曼路径积分的通用量子电路模型。
摘要 近年来,量子玻尔兹曼方法越来越受到人们的关注,因为一旦这种新兴计算技术成熟并且容错多量子比特系统可用,它们可能为在量子计算机上解决流体动力学问题提供一条可行的途径。开发玻尔兹曼方程的从头到尾量子算法的主要挑战在于将相关数据有效地编码为量子比特(量子位),并将流式传输、碰撞和反射步骤公式化为一个综合的幺正操作。目前关于量子玻尔兹曼方法的文献大多为管道的各个阶段提出数据编码和量子原语,假设它们可以组合成一个完整的算法。在本文中,我们通过展示文献中常讨论的编码,无论是碰撞还是流式传输步骤都不能是幺正的,从而推翻了这一假设。基于这一里程碑式的结果,我们提出了一种新颖的编码,其中用于编码速度的量子比特数取决于想要模拟的时间步数,上限取决于网格点的总数。鉴于现有编码所建立的非幺正性结果,据我们所知,我们的编码方法是目前已知的唯一一种可用于从头到尾量子玻尔兹曼求解器的方法,其中碰撞和流动步骤都作为幺正操作实现。
兴趣使他走出了物理学同事们的工作领域,并搬到了整个大陆。• 他接受了加州理工学院化学和生物学教授的职位。• 在那里,他可以免费使用计算机资源
在本文中,我们从密度估计的角度以及对自然图像统计的特定角度进行了对高斯二元限制的玻尔兹曼机器(GB-RBM)的分析。我们发现,GB-RBMS中可见单元的边际概率分布可以写为高斯人的线性叠加,该叠加位于投影平行的thelelotope的顶点,即在高尺寸中平行的。此外,我们的分析表明,GB-RBMS中可见单元的方差在建模输入分布中起着重要作用。GB-RBM。[1]。在实践中,Lee等人。提议对GB-RBMS施加稀疏的惩罚项[2]。但是,Krizhevsky成功地使用GB-RBMS仅从微小的信息中提取特征[3]。Le Roux等。 定量评估该模型为生成模型[4],并从IMEGE重建的视图中证明了模型的缺陷。 Cho等。 通过一些补救措施解决了培训程序的缺陷[5]。 Theis等。 进一步说明了基于Loglikelihoody的估计[6]。 我们的分析和结果表明,具有简单对比性差异算法的GB-RBM也能够学习独立的组件,即使学习分布不是数据的良好表示。Le Roux等。定量评估该模型为生成模型[4],并从IMEGE重建的视图中证明了模型的缺陷。Cho等。 通过一些补救措施解决了培训程序的缺陷[5]。 Theis等。 进一步说明了基于Loglikelihoody的估计[6]。 我们的分析和结果表明,具有简单对比性差异算法的GB-RBM也能够学习独立的组件,即使学习分布不是数据的良好表示。Cho等。通过一些补救措施解决了培训程序的缺陷[5]。Theis等。 进一步说明了基于Loglikelihoody的估计[6]。 我们的分析和结果表明,具有简单对比性差异算法的GB-RBM也能够学习独立的组件,即使学习分布不是数据的良好表示。Theis等。进一步说明了基于Loglikelihoody的估计[6]。我们的分析和结果表明,具有简单对比性差异算法的GB-RBM也能够学习独立的组件,即使学习分布不是数据的良好表示。
摘要 - 这项研究探讨了大型量子限制的玻尔兹曼机器(QRBMS)的实现,QRBMS(QRBMS)是量子机器学习(QML)的关键功能,作为D-Wave Pegasus量子硬件上的生成模型,以解决入侵检测系统(IDS)中数据集中的数据集不平衡。通过利用Pegasus的增强连接性和计算功能,成功嵌入了具有120个可见和120个隐藏单元的QRBM,超过了默认嵌入工具的限制。QRBM合成了超过160万次攻击样本,达到了超过420万张记录的平衡数据集。使用传统平衡方法(例如Smote和Randomovers采样器)进行比较评估表明,QRBMS产生了高质量的合成样本,显着改善了不同分类器的检测率,精度,回忆和F 1分数。该研究强调了QRBM的可扩展性和效率,完成了毫秒的平衡任务。这些发现突出了QML和QRBM作为数据预处理中的下一代工具的变革潜力,为现代信息系统中的复杂计算挑战提供了强大的解决方案。
图1。产妇营养限制(MNR)和重复的纳米粒子介导的IGF1递送(MNR + IGF1)对质粒特异性人IGF1(HIGF1)和内源性几内亚PIG IGF1(GPIGF1)的影响(GPIGF1)。A. HIGF1 mRNA存在于直接注射和间接暴露于用HigF1纳米颗粒处理的大坝的胎盘,尽管间接暴露的胎盘较少。b。与假治疗对照相比,在假处理的男性胎儿的MNR胎盘中,内源性GPIGF1较低。 MNR + IGF1组中的GPIGF1水平与对照相当。c。在雌性胎儿的胎盘中,对照,MNR或MNR + IGF1之间的内源性GPIGF1没有差异。对照(+假治疗):n = 6个大坝(8个雌性和11个男性胎儿),MNR(+假治疗):n = 6个大坝(5个女性和11个雄性胎儿),MNR+ IGF1:N = 5大坝(6个雌性和10个雄性胎儿)。数据是估计的边际平均值±95%置信区间。p值使用Bonferroni事后分析的通用估计方程计算得出。*P≤0.05; **p≤0.01240
其中,k B 为玻尔兹曼常数,X 为相关相空间体积,是微观状态数量的量度。注意,上述定义中需要使用对数,以使玻尔兹曼统计熵具有与热力学熵相同的加性。后来,克劳德·香农发现,可以使用与玻尔兹曼公式类似的公式(尽管符号相反)来量化信号的信息内容。继香农之后,人们通常将熵等同于系统的(缺乏)信息或“无序”。由于信息是一个渗透到许多自然科学中的概念,熵的概念很快传播到其他领域,例如生物学和遗传学。约翰·冯·诺依曼将玻尔兹曼熵推广到量子物理学。这实际上不仅仅是一种概括。事实上,方程 (1) 有点问题,因为 X 具有相空间体积的维度,而对数的参数应该是无量纲的——更不用说 SB 可以变为负值。但考虑到量子力学引入了由普朗克常数 h 给出的最小作用量,玻尔兹曼公式可以改写为:SB = k ln( X / hd )(其中 d 是系统的维数),只要 X hd ,它就始终为非负,并且只有当等号成立时它才为零。就离散量子