使用双室微生物燃料电池v.thushyanthini a v.kirusanthy b s.loheeswaran a,b,* a p.thushy94@gmail.com 兰卡兰卡兰卡兰卡兰卡兰卡兰卡兰卡兰卡兰卡兰卡兰卡
司法部税务司代理副助理检察长斯图尔特·戈德堡 (Stuart M. Goldberg) 表示:“法院判处的重刑反映了被告近十年来税务欺诈计划的惊人规模——这是有史以来最大的计划之一。”“德曼和金斯顿家族成员让守法纳税人损失了 5 亿多美元,并试图窃取两倍于此的金额。他们还试图通过银行系统循环数十亿美元的交易来掩盖自己的行踪,并使用燃料购买和油轮来制造他们的工厂实际上在生产和销售符合国税局抵免条件的生物柴油燃料的假象。税务司检察官和国税局特工不仅破获了这一计划——他们还发现、追踪并追回了数百万美元的
au:PleaseconfirmthatalleadinglevelsarreepressedCorrected:人口稳定增长和生活水平的提高,增强了全球对能源的需求。化石燃料占能源生产的四分之三以上,释放了大量的二氧化碳(CO 2),这些二氧化碳(CO 2)驱动气候变化的影响,并在许多国家造成严重的空气污染。因此,CO 2排放量的急剧减少,尤其是化石燃料,对于应对人为气候变化至关重要。为了减少CO 2排放并应付对能源的不断增长的需求,必须开发可再生能源,其中生物燃料将形成重要的贡献。在本文中,从第一到第四代液体生物燃料以及其工业发展和政策含义进行了详细讨论,重点是运输部门作为其他环保技术(例如电动汽车)的补充解决方案。
1。Bartels,J.R.,Pate,M.B。,&Olson,N。K.(2010)。对传统和替代能源的氢生产的经济调查。国际氢能杂志,35(16),8371-8384。2。Hosseini,S。E.和Wahid,M。A.(2016)。可再生和可持续能源的氢生产:有希望的绿色能源载体用于清洁开发。可再生和可持续能源评论,57,850-866。3。Ishaq,H。和Dincer,I。(2021)。对可再生能源氢生产方法的比较评估。可再生和可持续能源评论,135,110192。4。Kothari,R.,Singh,D。P.,Tyagi,V。V.和Tyagi,S。K.(2012)。 发酵氢生产 - 一种替代性清洁能源。 可再生和可持续能源评论,16(4),2337-2346。 5。 Lindsey,T。(2021年5月)。 “为什么氢可以是可再生能源的最佳选择”。 行业wweek.com。 从:https://www.industryweek.com/technology-and-iiot/emerging-technologies/article/21163897/is-hydrogen-the--and--answer-to-renewable-enewable-energable-energable-energy-energy s-Shortcomping 6。 Tarhan,C.,Cil,M。(2021年5月)。 “关于氢的研究,未来的清洁能量:氢储存方法”。 www.elsevier.com。 https://www.journals.elsevier.com/journal-erf-energy-storage 7。 Smolinka,T.,Ojong,E。T.和Garche,J。 (2015)。 可再生能源生产氢 - 电解器技术。 103-128)。 Elsevier。Kothari,R.,Singh,D。P.,Tyagi,V。V.和Tyagi,S。K.(2012)。发酵氢生产 - 一种替代性清洁能源。可再生和可持续能源评论,16(4),2337-2346。5。Lindsey,T。(2021年5月)。“为什么氢可以是可再生能源的最佳选择”。行业wweek.com。从:https://www.industryweek.com/technology-and-iiot/emerging-technologies/article/21163897/is-hydrogen-the--and--answer-to-renewable-enewable-energable-energable-energy-energy s-Shortcomping 6。Tarhan,C.,Cil,M。(2021年5月)。 “关于氢的研究,未来的清洁能量:氢储存方法”。 www.elsevier.com。 https://www.journals.elsevier.com/journal-erf-energy-storage 7。 Smolinka,T.,Ojong,E。T.和Garche,J。 (2015)。 可再生能源生产氢 - 电解器技术。 103-128)。 Elsevier。Tarhan,C.,Cil,M。(2021年5月)。“关于氢的研究,未来的清洁能量:氢储存方法”。www.elsevier.com。https://www.journals.elsevier.com/journal-erf-energy-storage 7。Smolinka,T.,Ojong,E。T.和Garche,J。(2015)。可再生能源生产氢 - 电解器技术。103-128)。Elsevier。在可再生能源和网格平衡的电化学能源存储中(pp。
摘要:随着世界不断发展和发展,人口也有增长,在这种人口中,人们对能源需求的需求越来越多,以及产生的食物浪费量。因此,非常需要寻找解决这两个问题的解决方案,同时仍然可以遇到贫困家庭。这项研究研究了利用双重培训的微生物燃料电池或MFC利用生物电性的水果,肉类和蔬菜食品废物的潜力。研究人员改编了Sambavi等人的方法。(2021)准备MFC设置。人类尿液是从健康的个体中收集的,作为接种物。MFC设置产生的电压。使用模拟万用表来量化MFC产生的生物电性14(14)天。单向方差分析测试表明,三种类型的MFC没有显示出电力产生的任何显着差异[F(2,39)= 1.307,p = 0.2822]。这表明食物浪费的类型不是影响MFC生物电性产生的关键因素。此外,果实,肉和蔬菜MFC在不同时间段,特别是在第五天,第二和第三天分别达到峰值电压输出。这表明食物浪费的类型决定了MFC达到其峰值电压输出的时间。建议进一步研究以检查三种类型的MFC在产生生物电性方面的潜力。
摘要:本综述着重于微生物生物燃料细胞的开发,以证明对生物电子设备开发的相似原理如何应用。可以在设计微生物生物燃料细胞时利用基于微生物的成熟生物传感器的低特异性,从而使它们能够消耗更广泛的化学燃料。电荷转移效率是开发生物燃料细胞时最具挑战性和最关键的问题之一。纳米材料和特定的氧化还原介质被利用以促进生物材料和生物燃料细胞电极之间的电荷转移。导电聚合物(CP)的应用可以提高生物燃料细胞的效率,而CPS非常适合固定酶,在某些特定情况下,CPS可以促进电荷转移。此外,生物相容性是植入生物燃料电池开发过程中的重要问题。因此,在本综述中讨论了与微生物进行聚合物的生物相容性相关方面。概述了修饰细胞壁/膜并提高电荷转移效率和对生物燃料细胞设计的适用性的方法。
摘要:本综述着重于微生物生物燃料细胞的开发,以证明对生物电子设备开发的相似原理如何应用。可以在设计微生物生物燃料细胞时利用基于微生物的成熟生物传感器的低特异性,从而使它们能够消耗更广泛的化学燃料。电荷转移效率是开发生物燃料细胞时最具挑战性和最关键的问题之一。纳米材料和特定的氧化还原介质被利用以促进生物材料和生物燃料细胞电极之间的电荷转移。导电聚合物(CP)的应用可以提高生物燃料细胞的效率,而CPS非常适合固定酶,在某些特定情况下,CPS可以促进电荷转移。此外,生物相容性是植入生物燃料电池开发过程中的重要问题。因此,在本综述中讨论了与微生物进行聚合物的生物相容性相关方面。概述了修饰细胞壁/膜并提高电荷转移效率和对生物燃料细胞设计的适用性的方法。
燃料,化学物质和材料的植物性生物合成促进了环境可持续性,其中包括减少温室气体排放,水污染和生物多样性的丧失。植物合成生物学(Synbio)的进步应提高基因工程的精确性和效率,以供可可固化性。适用的合成创新包括基因组编辑,基因电路设计,合成启动子的开发,基因堆叠技术和环境传感器的设计。此外,在开发空间分辨和单细胞OMICS方面的最新进展有助于在不同植物组织中发现和特征细胞类型特异性机制和时空基因调节,从而导致细胞和组织特异性基因的表达,从而改善生物强化生物的生物强化。这篇评论重点介绍了植物合成的进步和新的单细胞分子促进,以实现可持续的生物燃料和生物材料生产。
联合国可持续发展目标 (SDG) 包括提供负担得起的清洁能源(目标 7),以实现全民和平与繁荣(可持续发展目标,2022 年)。其他可持续发展目标“可持续城市和社区”(目标 11)、“负责任的消费和生产”(目标 12)和“气候行动”(目标 13)也要求寻找可持续原料和清洁技术来生产可再生燃料。木质纤维素生物质是被研究作为生物燃料生产来源的突出和新兴原料之一。自然界中木质纤维素生物质的全球年产量估计为 1815 亿吨。其中,据说目前仅利用了 82 亿吨生物质,其中 70 亿吨来自森林、农业和草类,12 亿吨来自农业残留物(Ashokkumar 等人,2022 年)。这种生物质的传统用途是烹饪、取暖、建筑材料以及纸张、纸板和纺织品的生产。随着技术和生物质管理的进步,这种有价值的木质纤维素生物质可用于生产可再生生物燃料。此外,纤维素、半纤维素和木质素材料可以用于其他有用的工业生物产品和生物化学品(Ashokkumar 等人,2022 年)。木质纤维素生物质由木质素、纤维素和半纤维素组成,全球储量丰富。纤维素是自然界中最丰富的有机物质,其次是木质素。纤维素、半纤维素和木质素的百分比组成在软木、硬木、农业残留物和草类等木质纤维素材料中有所不同。木质纤维素生物质来自各种原料,如糖料作物、淀粉作物、农业残留物、草本生物质、木质生物质、油籽和微藻 ( Yuan et al., 2018 )。木质纤维素生物质的纤维素和半纤维素成分中存在的碳水化合物被认为适合生产生物燃料。然而,木质纤维素材料难以转化,因为木质纤维素生物质中的木质素会抑制生物质中碳水化合物的糖化和水解,从而给生物燃料转化带来挑战。将木质纤维素生物质中的聚合物转化为单体的主要挑战在于其结构中的强共价键和非共价键、结晶度和木质素结垢,需要克服这些才能将其用作生物燃料生产材料(Preethi 等人,2021 年)。木质纤维素材料的顽固性可以通过预处理步骤来克服,这些步骤会扰乱生物质中的木质素成分。此后,可以对纤维素和半纤维素进行酶水解。预处理方法可以是物理的、化学的、物理化学的或生物的。预处理导致木质纤维素材料碎裂,进一步增加其表面积和溶解度,并降低生物质中纤维素和木质素含量的结晶度(Hoang 等人,2021 年;Kumar 等人,2022 年)。原料选择、原料混合、高效预处理