Mendelian疾病是由单个遗传基因座中的致病性变异引起的,通常表现为神经发育障碍(NDDS),影响了全球大部分儿科种群。这些疾病以非典型的大脑发育,智力残疾和各种相关的表型特征为特征。基因测试有助于临床诊断,但尚无定论的结果可以延长确认过程。最近对表观遗传失调的关注导致发现与NDD相关的DNA甲基化特征或发作性,从而加速了诊断精度。值得注意的是,参与泛素化途径的基因Trip12和USP7表现出特定的情节。了解这些基因在泛素化途径中的作用阐明了它们对情节形成的潜在影响。Trip12充当E3连接酶,USP7充当去泛素酶,在泛素化中呈现了对比的作用。比较这些基因致病性变异患者的表型性状既揭示了区别和共同点,从而提供了对潜在的病理生理机制的见解。本综述将Trip12和USP7在泛素化途径中的作用,它们对情节形成的影响以及对NDD发病机理的潜在影响。理解这些复杂的关系可能会揭示NDD的新型治疗靶标和诊断策略。
摘要甲基辅酶 M 还原酶 (MCR) 催化甲烷生成的最后步骤,甲烷生成是一种微生物代谢,几乎所有的生物甲烷排放到大气中都是由它引起的。几十年的生化和结构研究已经对 MCR 的体外功能产生了详细的了解,但对于 MCR 和甲烷产菌生理之间的相互作用知之甚少。例如,虽然通常说 MCR 催化甲烷生成的限速步骤,但这尚未经过明确的测试。在本研究中,为了更直接地了解 MCR 对甲烷八叠球菌生长的控制,我们生成了一种染色体上具有可诱导的 mcr 操纵子的菌株,从而可以仔细控制 MCR 表达。我们表明,在底物充足的分批培养中,MCR 不会限制生长速率。但是,通过仔细滴定 MCR 表达,可以获得生长限制状态。对经历 MCR 限制的 M. acetivorans 进行转录组分析,揭示了一种整体反应,其中数百种基因在不同功能类别中存在差异表达。值得注意的是,MCR 限制导致甲基硫醚甲基转移酶的强烈诱导,这可能是由于代谢中间体的循环不足造成的。此外,mcr 操纵子不受转录调控,即它是组成性表达的,这表明当细胞经历营养受限或应激条件时,MCR 的过量可能是有益的。总之,我们表明存在广泛的细胞 MCR 浓度可以维持最佳生长,这表明合成代谢反应等其他因素可能是产甲烷生长的限速因素。
选择最合适的保存方法对于维持生物中微生物的生命力,交流电,免疫原性和遗传稳定性至关重要(Simões2013)。最常见的保存技术是基于通过亚培养或通过脱水和冻结来维持持续生长的持续生长(Agarwal and Sharma 2006)。连续培养仅用于短期存储(Ryan等人。2000)由于该方法是费力的,并且经常重新培养可能会导致污染或SUD DEN菌株变性,这可能会导致病学,生理或毒力变化(Vasas等人。1998; Shivas等。 2005; Bégaud等。 2012; 2013)。 此外,许多微生物分类群目前是不可养殖的,因为合适的培养条件是未知的(Ryan等人 2000; Ryan等。 2019)。 因此,在超低温度下的冷冻干燥和冷冻保存被认为是长期存储的最佳方法(Ryan等人 2019)。1998; Shivas等。2005; Bégaud等。 2012; 2013)。 此外,许多微生物分类群目前是不可养殖的,因为合适的培养条件是未知的(Ryan等人 2000; Ryan等。 2019)。 因此,在超低温度下的冷冻干燥和冷冻保存被认为是长期存储的最佳方法(Ryan等人 2019)。2005; Bégaud等。2012; 2013)。此外,许多微生物分类群目前是不可养殖的,因为合适的培养条件是未知的(Ryan等人2000; Ryan等。2019)。因此,在超低温度下的冷冻干燥和冷冻保存被认为是长期存储的最佳方法(Ryan等人2019)。
Comparative analysis of the use of Lisdexanfetamine and methylphenidate in the treatment of TDAH Vinícius Ramos Ribeiro 1, Clara Lira Armbrust Ribeiro 1, Paulo de Morais Andrade Lima Neto 1, Camila Venceslau Rodrigues de Figueiredo 1, Gabriel Barros Silva 1, Luís Filipe Oiticica Rodrigo 1,Fernanda de Souza Margarida 1,Leonardo Tavares Figue。 ,Sibrio de Melo Ferreira Filho 1,PâmelaMoretde Sena Sarmento 1,Rêgo1的Arthur Wanderley Bion,Mariana Queiroz de Assis 1,Manuela de Barros Lins Pereira 1,Leonardo Serrrano De Moraes 1 Reis Zordan 4 Melo da Cunha Amaral 5,YuriEulálioPaposoLacerda 6,LourdesBeltrãoFirfininoNeta的Rose,CamillyVitóriaCardosopinheiro 8,Matheus Alessandro Callou Freire 9 Borges 12,MauroGonçalvesDeMorais Filho 13Comparative analysis of the use of Lisdexanfetamine and methylphenidate in the treatment of TDAH Vinícius Ramos Ribeiro 1, Clara Lira Armbrust Ribeiro 1, Paulo de Morais Andrade Lima Neto 1, Camila Venceslau Rodrigues de Figueiredo 1, Gabriel Barros Silva 1, Luís Filipe Oiticica Rodrigo 1,Fernanda de Souza Margarida 1,Leonardo Tavares Figue。 ,Sibrio de Melo Ferreira Filho 1,PâmelaMoretde Sena Sarmento 1,Rêgo1的Arthur Wanderley Bion,Mariana Queiroz de Assis 1,Manuela de Barros Lins Pereira 1,Leonardo Serrrano De Moraes 1 Reis Zordan 4 Melo da Cunha Amaral 5,YuriEulálioPaposoLacerda 6,LourdesBeltrãoFirfininoNeta的Rose,CamillyVitóriaCardosopinheiro 8,Matheus Alessandro Callou Freire 9 Borges 12,MauroGonçalvesDeMorais Filho 13
Zn 2+是大约850个人类转录因子所需的必需金属。这些蛋白质如何获得其必需的Zn 2+辅因子,以及它们是否对细胞中不稳定的Zn 2+池的变化敏感仍然是开放的问题。使用ATAC-SEQ进行可访问的染色质的区域,并结合转训练因子富集分析,我们研究了不稳定锌池的增加和减少如何影响染色质的可及性和转录因子富集。我们发现685个转录因子基序被差异富集,对应于507个独特的转录因子。在启动子与基因间区域的扰动模式和转录因子的类型截然不同,锌 - 纤维转录因子在升高的Zn 2+中强烈富集在基因间区域中。测试ATAC-SEQ和转录因子富集分析预测是否与转录因子结合的变化相关,我们使用ChIP-QPCR来实现六个p53结合位点。我们发现,对于六个目标,p53结合与ATAC-SEQ确定的局部可访问性相关。这些结果降低了不稳定锌的变化改变染色质的可及性和转录因子与DNA的结合。
5-甲基胞嘧啶 (5mC) 是一种广泛存在的沉默机制,可控制基因组寄生虫。在真核生物中,5mC 在寄生虫控制之外的基因调控中发挥着复杂的作用,但 5mC 也在许多谱系中丢失了。5mC 保留的原因及其基因组后果仍不太清楚。在这里,我们表明与动物密切相关的原生生物阿帕拉契变形虫具有转座子和基因体甲基化,这种模式让人联想到无脊椎动物和植物。出乎意料的是,变形虫中高甲基化的基因组区域源自病毒插入,包括数百种内源化巨型病毒,占蛋白质组的 14%。使用抑制剂和基因组分析的组合,我们证明 5mC 可以抑制这些巨型病毒插入。此外,替代的变形虫分离株显示出多态性巨型病毒插入,突显了感染、内源化和清除的动态过程。我们的结果表明,5mC 对于新获得的病毒 DNA 与真核生物基因组的受控共存至关重要,这使得变形虫成为了解真核生物 DNA 混合起源的独特模型。
摘要:甲基化是一种广泛存在的天然修饰,具有多种调节和结构功能,由大量 S -腺苷-L -蛋氨酸 (AdoMet) 依赖性甲基转移酶 (MTases) 进行。AdoMet 辅因子由多聚体蛋氨酸腺苷转移酶 (MAT) 家族从 L -蛋氨酸 (Met) 和 ATP 产生。为了推进机制和功能研究,已经开发出重新利用 MAT 和 MTase 反应以接受来自相应前体的可转移基团的扩展版本的策略。在这里,我们使用结构引导的小鼠 MAT2A 工程,以便从合成的蛋氨酸类似物 S -(6-叠氮己-2-炔基)-L -同型半胱氨酸 (N 3 -Met) 生物催化生产扩展的 AdoMet 类似物 Ado-6-叠氮化物。三种工程化的 MAT2A 变体表现出对延伸类似物的催化能力,并且在没有和存在竞争性 Met 的情况下,都支持与 M. Taq I 和小鼠 DNMT1 的工程化变体在级联反应中进行 DNA 衍生化。然后,我们使用 CRISPR-Cas 基因组编辑将两种工程化变体作为 MAT2A-DNMT1 级联安装在小鼠胚胎干细胞中。所得细胞系在暴露于 N 3 -Met 且存在生理水平的 Met 时,保持正常的活力和 DNA 甲基化水平,并显示出 Dnmt1 依赖的 DNA 修饰和延伸叠氮化物标签。这首次展示了一种用于生物合成生产延伸 AdoMet 类似物的遗传稳定系统,该系统能够在活哺乳动物细胞中对 DNMT 特异性甲基化组进行轻度代谢标记。■ 简介
通过对已发表的数据,科学文献和无甲基化阵列的分析来鉴定出无数甲基化筛选阵列上的50%的基因座,以查找CpG甲基化与各种性状或疾病的关联(图2和表2)。根据样本量,统计鲁棒性和科学影响,对超过1000个EWAS研究进行了策划和过滤。探针具有最高的统计显着性和效果大小的优先级,并且选择了选择,以最大程度地表示特征和疾病的表示。选定的含量与广泛的生物类别相关联,包括心血管,代谢,神经退行性/精神病学,自身免疫性,呼吸,生殖,肾脏,肾脏,衰老,遗传,环境暴露,环境暴露,以及感染相关的特征和疾病。还包括了来自以前和现有的Infinium Beadchip平台的表观遗传钟和细胞反卷积面板,以提供与EWAS研究中细胞类型估计值和表型预测的既定预测指标的向后兼容性(表3和图3)。
uhrf1在受精后主要迁移到卵和胚胎中的细胞质,其中少量的UHRF1在某些区域(例如ICR)中维持甲基化修饰的细胞核中剩余少量。另一方面,除了受精后立即卵和胚胎外,所有UHRF1均易位到细胞核中,并在与细胞分裂相关的DNA复制过程中复制甲基化修饰。由于使用卵的实验受到局限性,因此研究小组使用人类培养的细胞发现NLRP5和OOEEP与构成SCMC的核心蛋白之间的结合。研究小组还产生了一条细胞系,可以通过药物诱导的诱导UHRF1(称为Cuhrf1:图1),该细胞系已被修饰以将其定位为细胞质,就像卵子一样,并检查了Cuhrf1在NLRP5和OOEP存在下CuHRF1变化的蛋白质稳定性。我们发现,在OOEEP存在下,CuHRF1的稳定性不会改变,但是在NLRP5存在下,Cuhrf1的稳定性增加了两倍以上(图2)。我们还发现,NLRP5缺陷小鼠的卵中的细胞质和细胞核中UHRF1蛋白的量均降低。该结果表明,在易位进入细胞核后,稳定的UHRF1的一部分可能稳定存在。
105,也可以根据CC0许可使用。(未通过同行评审认证)是作者/资助者。本文是美国政府的工作。不受此前版本的版权持有人的版权,该版本于2024年6月11日发布。 https://doi.org/10.1101/2023.12.14.571787 doi:Biorxiv Preprint