摘要 包括聚合物/玻璃叠层在内的玻璃基材料是用于封装 5G 和 6G 微电子模块和元件的极具吸引力的结构块。我们利用商用太赫兹时域光谱 (THz-TDS) 系统首次对 AGC Inc. EN-A1 无碱硼铝硅酸盐玻璃和层压在钠钙浮法玻璃基板上的味之素增压膜 (ABF) 进行了 200 GHz 至 2.5 THz 的宽带特性分析。EN-A1 玻璃和层压 ABF 的折射率 n (ν)、衰减系数 α (ν)、介电常数 ε ′ (ν) 和损耗角正切 tan δ (ν) 分别为 n EN − A1 = 2 . 376,α EN − A1 = 31。 1 cm − 1 ,ε ′ EN − A1 = 5 . 64,tan δ EN − A1 = 0 . 062,n ABF = 1 . 9,α ABF = 30 cm − 1 ,ε ABF = 3 . 8,tan δ ABF = 0 . 072,均为 1 THz。我们的研究结果验证了 EN-A1 玻璃和 ABF 聚合物材料作为微波和 THz 封装解决方案的良好前景。
在约翰霍普金斯大学应用物理实验室 (APL),微电子封装包括广泛的微电子制造和组装技术。传统的微电子封装在裸片级集成电子元件。在 APL,微电子封装已发展到包括定制微型电气、机械和机电设备的封装。APL 的工程师为各种项目和赞助商设计、制造、组装、检查、筛选、维修并提供拆包解决方案。凭借其技术能力和设施,以及其员工的技能,APL 能够为支持研发、国防、近地和深空任务以及医学的关键任务项目制作和生产各种设备的原型,例如传感器、探测器以及通信和计算硬件。本文重点介绍 APL 的微电子封装能力。
第 26 届电子封装技术会议 (EPTC2024) 将于 2024 年 12 月 3 日至 12 月 6 日在新加坡举行。会议将包括主题演讲、技术会议、受邀演讲、小组讨论、研讨会、展览和交流活动。主题包括模块、组件、材料、设备技术、组装、可靠性、互连设计、设备和系统封装、异构集成、晶圆级封装、柔性电子、LED、物联网、5G、新兴技术、2.5D/3D 集成技术、智能制造、自动化和人工智能。去年有 566 名与会者。今年我们将继续举办为期 4 天的会议,并期待更多与会者。
车博士曾 4 次获得最佳国际会议论文奖 (EPTC2003 、 EPTC2013 、 Itherm2006 、 ICEPT2006) 。 他合着了一本书,并在先进微电子封装领域的同行期刊和会议论文集上发表了 170 多篇技术论文。他拥有 11 项 已获授权或正在申请的美国专利。 他的研究兴趣包括先进封装的可靠性设计、铜线键合、硅通孔 (TSV) 技术、扇出型晶圆级 / 皮肤级封装、有限元 建模与仿真、微电子封装材料特性、物理驱动和数据驱动的机器学习方法,用于先进封装技术的快速技术风险评 估。 车博士担任 35 多个国际科学期刊的同行评审员,例如 J. of Materials Science 、 J. of Electronic Materials 、 J.Materials and Design 、 Materials characterization 、 Microelectronics Reliability 、 IEEE Trans.on CPMT 、 IEEE Trans.on DMR 、 International J. of Fatigue 、 J. of Alloys and Compounds 、 J. of Micromechanics and Microengineering 等。 车博士连续四年( 2020 年至 2023 年)被斯坦福大学评为全球前 2% 科学家。 他是 IEEE 高级会员。
摘要:电子封装产品在使用过程中,焊点在温度循环作用下发生热疲劳,对电子产品的性能和焊点的可靠性有显著的影响。本文对微电子封装焊点热疲劳失效机理、热疲劳过程的组织变化、对焊点疲劳寿命的影响因素以及热疲劳寿命的仿真分析与预测进行了综述。研究表明,在交变温度循环的高温阶段,焊点发生不均匀粗化,导致疲劳裂纹的产生。但焊料厚度和高温阶段的保持时间对热疲劳影响不显著。随着循环次数的增加,粗化区和IMC层不断增厚,裂纹沿金属间化合物(IMC)层与粗化区界面萌生并扩展,最终导致焊点失效。对于含铅和无铅焊料,含铅焊料表现出更快的疲劳裂纹扩展速率,并以穿晶方式扩展。温度和频率对焊点热疲劳寿命的影响程度不同,焊点的疲劳寿命可以通过多种方法和模拟裂纹轨迹进行预测,也可以通过使用统一的本构模型和有限元分析进行预测。
所提供的数据和信息基于在实验室条件下进行的测试。无法由此得出有关产品在实际条件下的行为及其对特定用途的适用性的可靠信息。客户有责任通过考虑所有特定要求并应用客户认为合适的标准(例如 DIN 2304-1)来测试产品是否适用于预期用途。与产品一起加工的材料的类型、物理和化学特性以及运输、储存、加工和使用过程中发生的所有实际影响都可能导致产品的行为与实验室条件下的行为不同。所提供的所有数据都是在实验室条件下测量的典型平均值或唯一确定的参数。因此,所提供的数据和信息不能保证特定的产品特性或产品对特定用途的适用性。未经本专利所有者许可,本文所包含的任何内容均不得解释为表明不存在任何相关专利,或构成对任何专利所涵盖的开发的许可、鼓励或建议。 DELO 提供的所有产品均受 DELO 的一般业务条款约束。口头附属协议不予适用。
摘要 — 半导体行业正在经历从传统的缩小器件尺寸和降低成本方法的重大转变。芯片设计人员积极寻求新的技术解决方案,以提高成本效益,同时将更多功能融入硅片封装中。一种有前途的方法是异构集成 (HI),它涉及先进的封装技术,使用最合适的工艺技术集成独立设计和制造的组件。然而,采用 HI 会带来设计和安全挑战。要实现 HI,先进封装的研究和开发至关重要。现有研究提出了先进封装供应链中可能存在的安全威胁,因为大多数外包半导体组装和测试 (OSAT) 设施/供应商都在海外。为了应对日益增长的半导体需求并确保半导体供应链的安全,美国政府正在大力努力将半导体制造设施转移到国内。然而,美国的先进封装能力也必须得到加强,才能完全实现建立安全、高效、有弹性的半导体供应链的愿景。我们努力的目的是找出美国先进封装供应链中可能存在的瓶颈和薄弱环节。索引词 — 先进封装、半导体供应链、先进封装供应链、硬件安全和保障、安全异构集成。
2023 年秋季 EEE 598 先进电子封装和集成工艺和工具 讲师:Hongbin Yu,ERC 159,电话:965-4455,电子邮件:yuhb@asu.edu 课程目标 随着政府和私营部门对将先进半导体制造能力转移到国内的兴趣和努力不断增加,微电子封装和代际,特别是先进封装能力,受到了越来越多的关注。本课程旨在介绍微电子封装和集成中使用的基本和更重要的先进工艺和工具,例如扇出晶圆级封装、中介层技术和硅通孔、混合键合,这些工艺和工具能够实现 2.5 D 和 3D 芯片或小芯片的集成,从而显着提高芯片的性能。这些过程中使用的工具也将介绍,其中一些将来自在亚利桑那州有业务的供应商。我们将讨论这些先进封装工艺所实现的应用示例,例如手机、游戏机、射频、光子学和数据中心中的应用。课程大纲
电子封装技术在全球范围内迅速发展,以满足消费电子、运输、航空航天、数据中心、物联网、人工智能、工业和节能等应用系统的需求。美国和世界各地的最近芯片法案就是明证,各国政府和工业界正在大力投资电子封装技术、研究和创新。1965 年,戈登·摩尔表示,半导体芯片上的晶体管数量每 18 个月到两年就会翻一番。这被称为摩尔定律,并为我们今天的电子系统提供了依据。但摩尔定律现在已经结束,因此迫切需要电子封装创新和熟练的劳动力来实现行业超越摩尔定律的未来愿景。本课程将通过教授电子封装的基本原理,让学生更好地为电子行业做好准备。学生将学习封装类型、电气设计、热设计、材料选择、可靠性评估等关键领域,以及不同应用系统的电子封装所需的挑战和权衡。课程目标/学习成果