创建 Connect 平台帐户 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 将仪器链接到 Connect(仅限管理员) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 将仪器连接到互联网 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 创建 PIN 码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 从仪器生成链接代码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
抽象背景胰腺癌(PC)是一个充满挑战的诊断,尚未受益于免疫肿瘤治疗的进步。不可逆的电穿孔(IRE)是一种非热消融的方法,用于治疗精选的局部可切除的不可切除的PC的患者,并增强了某些免疫疗法的作用。酵母衍生的颗粒β-葡聚糖会诱导训练有素的先天免疫,并成功减轻了鼠PC肿瘤负担。这项研究检验了以下假设:IRE可以增强β -Glucan在PC治疗中诱导训练的免疫力。方法β-葡萄糖训练的胰髓样细胞在暴露于消融和未灭绝的肿瘤调节培养基后的训练有素的反应和抗肿瘤功能。β -Glucan和IRE组合疗法在野生型和抹布 - / - 小鼠的原位鼠PC模型中测试。肿瘤免疫表型。与IRE结合使用以治疗PC。通过质量细胞仪评估IRE后PC服用口服β-葡聚糖患者的外周血。结果开发的肿瘤细胞引起了受过训练的训练反应,并增加了抗肿瘤功能。在体内,β-葡聚糖与IRE结合减少的局部和远处肿瘤负担延长了鼠的原位PC模型。这种组合增强了对PC肿瘤微环境的免疫细胞浸润,并增强了肿瘤浸润的髓样细胞的训练反应。这种双重疗法的抗肿瘤作用与适应性免疫反应无关。此外,口服的β-葡聚糖被确定为诱导鼠胰腺中训练有素的免疫力的替代途径,并与IRE结合使用了PC的长期生存。β -Glucan在体外治疗中还诱导了从接受治疗的PC患者获得的外周血单核细胞中受过训练的免疫力。最后,发现口服的β-葡聚糖会显着改变五名患有III期III期患者的外周血中的先天细胞景观。结论这些数据突出显示了在
仅用于研究使用。不适用于诊断程序。©2023 Thermo Fisher Scientific Inc.保留所有权利。除非另有说明,否则所有商标都是Thermo Fisher Scientific及其子公司的财产。col023914 0223
本文件中提及的产品的预期用途各不相同。有关具体预期用途声明,请参阅使用说明 (IFU)。© 2022 Thermo Fisher Scientific Inc. 保留所有权利。除非另有说明,所有商标均为 Thermo Fisher Scientific 及其子公司的财产。C-Flex 是 Saint-Gobain Performance Plastics Corporation 的商标。Tritan 是 Eastman Chemical Company 的商标。
摘要:我们研究了通过 CRISPR-Cas9 合子电穿孔在小反刍动物中进行单步基因组编辑的可能性。我们利用双 sgRNA 方法靶向绵羊胚胎中的 SOCS2 和 PDX1 以及山羊胚胎中的 OTX2。比较了在胚胎发育的四个不同时间进行的显微注射和三种不同电穿孔设置的基因编辑效率。在受精后 6 小时对绵羊合子进行电穿孔,使用包括短高压(穿孔)和长低压(转移)脉冲的设置,可以有效产生 SOCS2 敲除囊胚。CRISPR/Cas9 电穿孔后的突变率为 95.6% ± 8%,包括 95.4% ± 9% 的双等位基因突变;相比之下,使用显微注射时分别为 82.3% ± 8% 和 25% ± 10%。我们还成功破坏了绵羊的 PDX1 基因和山羊胚胎的 OTX2 基因。PDX1 的双等位基因突变率为 81 ± 5%,OTX2 的双等位基因突变率为 85% ± 6%。总之,利用单步 CRISPR-Cas9 合子电穿孔,我们成功地在小反刍动物胚胎基因组中引入了双等位基因缺失。
本文件中介绍的方法由一位在实验中使用过 Alt-R CRISPR-Cas9 系统的 IDT 客户提供。本文件可作为在类似模型生物中使用 Alt-R CRISPR-Cas9 系统的起点,但可能并未针对您的基因或应用进行完全优化。IDT 不保证方法或此类方法的任何性能。IDT 应用专家只能提供与本文件中概述的方法相关的一般技术支持和故障排除支持。
CRISPR/Cas9 技术彻底改变了原代细胞的基因工程。尽管它在 CD8 + T 细胞生物学研究中的应用势头迅猛,但 CRISPR/Cas9 对 CD8 + T 细胞体内功能的影响程度仍不清楚。在这里,我们优化了基于核转染的 CRISPR/Cas9 基因工程,用于幼稚和体外激活的小鼠原代 CD8 + T 细胞,并测试了它们的体内免疫反应。幼稚 CD8 + T 细胞的核转染保留了它们体内抗病毒免疫反应,其程度与未核转染的细胞没有区别,而体外激活的 CD8 + T 细胞的核转染导致在过继转移后的早期时间点扩增/存活率略有受损,收缩更为明显。值得注意的是,不同的靶蛋白在基因编辑后显示出不同的衰减率。这与完成基因失活所需的相当一段时间形成了鲜明对比。因此,为了实现最佳实验设计,确定靶基因产物丢失的动力学以适应基因编辑后的潜伏期至关重要。总之,基于核转染的 CRISPR/Cas9 基因组编辑可高效、快速地生成突变 CD8 + T 细胞,而不会对其体内功能造成不利限制。
► GFP 表达是选择电穿孔条件的常用工具。选择电穿孔条件时使用的有效载荷是相关的。转染 RNP 或 GFP-mRNA 时细胞活力相当 (A);然而,转染效率根据使用的有效载荷而不同,GFP-mRNA 转染在更广泛的电穿孔参数中较高,而 RNP 效率与施加的电压相关 (B)。
直接评估患者样本在癌症治疗中具有前所未有的潜力。液体活检中的循环肿瘤细胞 (CTC) 是临床中快速发展的原发细胞来源,是实时揭示肿瘤信息的功能分析的理想候选者。然而,缺乏允许直接从液体活检样本中直接主动询问 CTC 的常规方法,这是液体活检在临床环境中转化应用的瓶颈。为了解决这个问题,我们提出了一种使用微流体涡旋辅助电穿孔系统的工作流程,该系统设计用于对从血液中纯化的 CTC 进行功能评估。通过对野生型 (HCC827 wt) 和吉非替尼耐药 (HCC827 GR6) 非小细胞肺癌 (NSCLC) 细胞进行药物反应分析来评估对该方法的验证。被困在微尺度涡旋中的 HCC827 细胞被电穿孔以依次将药物输送到细胞溶胶中。使用自动单细胞图像荧光强度算法,对两种细胞系的电穿孔条件进行了表征,以促进多种药物的递送。能够以高纯度收集掺入血液以模拟耐药 CTC 的 HCC827 GR6 细胞,表明该装置能够最大限度地减少下游敏感细胞检测的背景细胞影响。使用我们提出的工作流程,恢复吉非替尼敏感性的药物组合反映了预期的细胞毒性反应。总之,这些结果代表了一种微流体多药筛选面板工作流程,可以实现对患者 CTC 的原位功能询问,从而加速液体活检的临床标准化。
d. 将培养板放入 37 C 培养箱中并孵育 10 分钟。每 3-4 分钟轻轻摇晃培养板一次有助于完全分离细胞。 e. 加入 1 mL 含有 10 m M Y-27632 的 StemFit 培养基,并轻轻吹打细胞直至 iPSC 完全分离。 f. 计数细胞,并将 1.0 3 10 4 –1.5 3 10 4 个细胞接种到 iMatrix 涂层的 6 孔板中,该板含有 2 mL 含有 10 m M Y-27632 的 StemFit 培养基,如步骤 cg 中所述,将细胞在 37 C 的 CO 2 培养箱中孵育过夜。 h. 第二天,用 2 mL StemFit 培养基更换培养基。如果有很多死细胞漂浮,继续向培养基中添加 Y-27632,最终浓度为 10 m M。 i.培养期间每 2 天更换一次培养基。j. iPSC 在第 6-8 天将达到半汇合状态。切勿让它们过度汇合。“半汇合”是指 iPSC 菌落直径小于 2 毫米,并且 iPSC 菌落之间仍有一些间隙。生长速度取决于 iPSC 系,因此应通过实验确定半汇合时间。
