受精卵电穿孔是小鼠中 CRISPR/Cas9 介导的基因组编辑中复杂的原核注射程序的快速替代方法。然而,目前的电穿孔方案要么需要投资专门的电穿孔仪,要么需要对受精卵进行腐蚀性预处理,这会损害胚胎的活力。在这里,我们描述了一种易于适应的方法,通过使用带有合成 CRISPR/Cas9 组件的普通电穿孔仪对完整的受精卵进行电穿孔,高效地在小鼠中引入特定突变,并且技术要求最低。该方案可有效处理来自各种遗传背景的受精卵,并与其他 CRISPR 核酸酶(如 Cas12a)兼容。
电穿孔已成为一种高效的方法,可以快速,熟练地将外源质粒DNA引入各种细胞类型,尤其是那些缺乏自然能力的细胞类型。本协议文章描述了一种使用电穿孔转化农杆菌Rhizogenes K599的方法。这种方法虽然需要纯化的质粒DNA,有能力的细菌以及标准的电穿孔设备,例如基因脉冲控制器和比色杯,但就转化效率和速度而言具有显着优势。本文详细介绍的协议不仅概述了程序步骤,还强调了在A. rhizogenes K599研究的背景下有效转化的重要性。此外,它提供了有关所达到的转化率的见解,从而为研究人员提供了评估该方法疗效的基准。通过阐明设备要求和程序上的细微差别,该协议旨在使研究人员能够采用电穿孔作为A. rhizogenes k599遗传操作的可靠工具,从而促进各种生物技术应用中的进步。
肢带型肌营养不良症 R1 型 (LGMDR1) 是一种人类常染色体隐性肌病,由钙蛋白酶 3 蛋白 (CAPN3) 缺乏引起。这种疾病缺乏有效的治疗方法和合适的模型,因此通过 CRISPR-Cas9 生成 KO 猪提供了一种更好地了解疾病行为学和开发新疗法的方法。显微注射是 CRISPR-Cas9 在猪胚胎中进行基因编辑的主要方法,但最近也有报道称使用电穿孔可以更快、更轻松地处理更多胚胎。本研究的目的是优化猪卵母细胞电穿孔,以最大限度地提高胚胎质量和突变率,从而有效生成 LGMDR1 猪模型。我们发现,与显微注射相比,使用 4 个电穿孔脉冲和双倍 sgRNA 浓度生成 CAPN3 KO 胚胎的效率最高。直接比较显微注射和电穿孔,发现胚胎发育速度和突变参数相似。我们的研究结果表明,卵母细胞电穿孔是一种比显微注射更简单、更快捷的方法,可与标准方法相媲美,为猪转基因的民主化铺平了道路。© 2022 作者。由 Elsevier Inc. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
Sara Gouarderes、Layal Doumard、Patricia Vicendo、Anne-Françoise Mingotaud、Marie-Pierre Rols 等人。电穿孔不会直接影响人类真皮成纤维细胞的增殖和迁移特性,而是通过分泌组间接影响。生物电化学,2020 年,134,第 107531 页。�10.1016/j.bioelechem.2020.107531�。�hal-02560967�
背景:异种抗原是种间异种移植成功的主要问题。GGTA1 编码 α 1,3-半乳糖基转移酶,该酶对半乳糖基-α 1,3-半乳糖的生物合成至关重要,而半乳糖是导致超急性排斥的主要异种抗原。因此,GGTA1 修饰猪是猪对人异种移植的有希望的供体。在本研究中,我们开发了一种通过电穿孔将 CRISPR/Cas9 系统引入体外受精猪受精卵以生成 GGTA1 修饰猪的方法。结果:我们设计了五种针对 GGTA1 中不同位点的向导 RNA (gRNA)。通过电穿孔将 Cas9 蛋白与每一种 gRNA 一起引入后,评估了受精卵发育成的囊胚中的基因编辑效率。使用基因编辑效率最高的 gRNA 生成 GGTA1 编辑猪。在用 Cas9/gRNA 复合物转移电穿孔受精卵后,两头受体母猪产下六头仔猪。深度测序分析显示,六头仔猪中有五头在 GGTA1 的目标区域携带双等位基因突变,没有脱靶事件。此外,用异凝集素 B4 染色证实了 GGTA1 双等位基因突变猪的 GGTA1 功能缺陷。
抽象背景胰腺癌(PC)是一个充满挑战的诊断,尚未受益于免疫肿瘤治疗的进步。不可逆的电穿孔(IRE)是一种非热消融的方法,用于治疗精选的局部可切除的不可切除的PC的患者,并增强了某些免疫疗法的作用。酵母衍生的颗粒β-葡聚糖会诱导训练有素的先天免疫,并成功减轻了鼠PC肿瘤负担。这项研究检验了以下假设:IRE可以增强β -Glucan在PC治疗中诱导训练的免疫力。方法β-葡萄糖训练的胰髓样细胞在暴露于消融和未灭绝的肿瘤调节培养基后的训练有素的反应和抗肿瘤功能。β -Glucan和IRE组合疗法在野生型和抹布 - / - 小鼠的原位鼠PC模型中测试。肿瘤免疫表型。与IRE结合使用以治疗PC。通过质量细胞仪评估IRE后PC服用口服β-葡聚糖患者的外周血。结果开发的肿瘤细胞引起了受过训练的训练反应,并增加了抗肿瘤功能。在体内,β-葡聚糖与IRE结合减少的局部和远处肿瘤负担延长了鼠的原位PC模型。这种组合增强了对PC肿瘤微环境的免疫细胞浸润,并增强了肿瘤浸润的髓样细胞的训练反应。这种双重疗法的抗肿瘤作用与适应性免疫反应无关。此外,口服的β-葡聚糖被确定为诱导鼠胰腺中训练有素的免疫力的替代途径,并与IRE结合使用了PC的长期生存。β -Glucan在体外治疗中还诱导了从接受治疗的PC患者获得的外周血单核细胞中受过训练的免疫力。最后,发现口服的β-葡聚糖会显着改变五名患有III期III期患者的外周血中的先天细胞景观。结论这些数据突出显示了在
福建牡蛎(Crassostrea Angulate)是具有较高经济价值的重要海洋双壳类软体动物。基因功能研究和基因编辑技术在牡蛎中具有广泛的应用前景。群集的定期间隔短的短质体重复(CRISPR)/CRISPR相关蛋白9(CAS9)系统已广泛用于许多物种的基因组工程。CRISPR介导的基因编辑也通过微注射直接递送CRISPR/CAS9成分将CRISPR/CAS9成分直接递送到牡蛎胚胎中成功地用于了Paciifif的牡蛎。但是,与显微注射相关的低吞吐量和操作困难是限制CRISPR/CAS9在牡蛎中广泛应用的因素之一。在这项研究中,我们试图将CRISPR/CAS9系统传递到C.通过电穿孔的角度。在本研究中,将一个多合一的CRISPR/CAS9载体质粒用作CRISPR/CAS9系统。使用鸡蛋和胚芽幼虫进行电穿孔。电穿孔后大量幼虫变形或死亡。在电穿孔卵中发育的D-larvae中检测到单个碱基取代突变。我们的结果表明,CRISPR/CAS9系统可以传递到C的胚胎中,用于通过电穿孔进行基因编辑,该系统提供了参考,并将进一步有助于Mollusks中电穿孔的未来应用。
在各种生命科学应用中,通过转染细胞来改变其基因型或表型至关重要。有多种转染方法可供选择,而选择最佳方法通常取决于与特定应用的兼容性。电穿孔是一种物理转染策略,它使用电脉冲在细胞膜上创建临时孔,核酸或蛋白质可以通过这些孔进入细胞。它是一种高效而强大的工具,已被证明在基于基因编辑的有效载荷(如 CRISPR-Cas9 系统和 TALEN)方面具有出色的性能。赛默飞世尔提供研究级 Invitrogen™ Neon™ NxT 电穿孔系统(配备 10uL 或 100uL 试剂盒)和符合 GMP 标准的 CTS™ Xenon™ 电穿孔系统(配备 1mL SingleShot 或封闭式一次性 5-25 mL MultiShot 耗材)。这两种仪器都采用相同的核心技术。在这项研究中,我们已经证明这些平台具有高度灵活性,并且与具有不同有效载荷的多种哺乳动物细胞类型兼容。此外,我们还展示了两台仪器之间电穿孔条件的可扩展性。Neon NxT 系统上的基因编辑条件可以扩展到 Xenon 系统,后者是专为符合 GMP 的细胞疗法生产而设计的平台。
产品编号 产品描述 单位大小 MPK1025 Neon 转染系统 10 µL 试剂盒 25 x 2 rxn MPK10025 Neon 转染系统 100 µL 试剂盒 25 x 2 rxn MPK1096 Neon 转染系统 10 µL 试剂盒 96 x 2 rxn MPK10096 Neon 转染系统 100 µL 试剂盒 96 x 2 rxn MPT100 Neon 转染管 100 管 我们鼓励您考虑转换到我们改进的 Invitrogen Neon NxT 电穿孔系统,该系统利用相同、可信赖的电穿孔技术,性能相当或更好。有关系统性能的更多信息,我们建议您查看 Neon 与 Neon NxT 比较应用说明。使用 Neon NxT 电穿孔系统,您将受益于 Neon 转染系统的以下相同方面: