疟疾中耐药性的兴起需要探索新颖的治疗策略。靶向表观遗传途径可以开放新的有前途的治疗途径。在这项研究中,我们关注PF BDP1,这是恶性疟原虫中必不可少的溴脱域蛋白。 利用泛选择性溴结构域抑制剂MPM6,我们确定了有效的初始命中率,然后将其开发到纳摩尔粘合剂中。 通过虚拟对接,等温滴定量热法和X射线晶体学的结合,我们阐明了新抑制剂与PF BD1的分子相互作用。 我们的发现包括PF BD1和PV BD1与这些抑制剂的第一个共晶结构,提供了对其结合机制的见解。 使用PF BDP1在恶性疟原虫中的有条件敲低的进一步验证表现出对抑制剂的寄生虫敏感性,强调了其作为针对疟疾的靶向治疗方法的潜力。在这项研究中,我们关注PF BDP1,这是恶性疟原虫中必不可少的溴脱域蛋白。利用泛选择性溴结构域抑制剂MPM6,我们确定了有效的初始命中率,然后将其开发到纳摩尔粘合剂中。通过虚拟对接,等温滴定量热法和X射线晶体学的结合,我们阐明了新抑制剂与PF BD1的分子相互作用。我们的发现包括PF BD1和PV BD1与这些抑制剂的第一个共晶结构,提供了对其结合机制的见解。使用PF BDP1在恶性疟原虫中的有条件敲低的进一步验证表现出对抑制剂的寄生虫敏感性,强调了其作为针对疟疾的靶向治疗方法的潜力。
保留所有权利。未经许可不得重复使用。 (未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。此预印本的版权所有者此版本于 2025 年 1 月 12 日发布。;https://doi.org/10.1101/2025.01.10.25320353 doi:medRxiv preprint
在脊椎动物和蚊子的生命周期中,支持疟原虫疟原虫生存的一些细胞器适应性包括内质网、线粒体和顶质体。这种高度展开的内质网支持高蛋白质合成,从而促进寄生虫的快速生长和复制。线粒体在这种寄生虫中起着至关重要的作用,推动能量产生和调节新陈代谢。顶质体是来自红藻来源的次级共生的残留质体,对脂质合成、异戊二烯生产和脂肪酸延长至关重要。提供必需的、宿主无法获得的代谢物。对这些细胞器的研究可能会带来针对疟疾等疾病的新疗法,并有助于解决全球健康问题。
尽管疟疾人寄生虫具有巨大的重要性,但其超微结构的一些基本特征仍然晦涩难懂。在这里,我们采用高分辨率体积电子显微镜检查和比较了恶性疟原虫的可传染性男性和女性性血统的超微结构,以及更深入研究的无性血液阶段,重新审视了3D中先前描述的现象。这样做,我们通过示例在配子细胞中表现出多个线粒体的存在来挑战单个线粒体的广泛接受概念。我们还提供了配子细胞特异性细胞抑制剂或细胞口的证据。此外,我们生成了寄生虫内质网(ER)和高尔基体设备的第一个3D重建,以及在感染的红细胞中诱导的配子细胞诱导的外质结构。评估细胞器之间的互连性,我们发现了细胞核,线粒体和apicoplast之间的频繁结构作用。我们提供了证据,表明ER是与众多细胞器和配子细胞的三叶骨膜的混杂相互作用。这些体积电子显微镜资源的公共可用性将有助于其他具有不同研究问题和专业知识的其他人的重新介入。总的来说,我们以纳米尺度重建了恶性疟原虫配子细胞的3D超微结构,并阐明了这些致命的寄生虫的独特细胞器生物学。
1 布基纳法索中西部地区理事会生物医学部卫生科学研究所,BP 18 Nanoro; berengerkabore@yahoo.fr(BK); rouambatoussaint@gmail.com (土耳其); hamidou_ilboudo@hotmail.com(夏威夷); palponet@yahoo.fr(波兰); halidoutinto@gmail.com (HT)2 纳诺罗临床研究部门,BP 18 纳诺罗,布基纳法索; meli.sougue@gmail.com(MMHTS); nadege.zoma@yahoo.fr(新西兰); kazienga_adama@yahoo.fr (AK)3 Tengandogo 教学医院,CMS 104,BP 11 瓦加杜古,布基纳法索; dantola.kain@ujkz.bf 4 ISGlobal,巴塞罗那大学医院,08036 巴塞罗那,西班牙; quique.bassat@isglobal.org 5 Manhiça 健康研究中心 (CISM),92 Avenida Cahora Bassa,马普托,莫桑比克 6 ICREA,Pg. Lluís Companys 23, 08010 巴塞罗那,西班牙 7 巴塞罗那大学 Sant Joan de Déu 医院儿科,Passeig Sant Joan de Déu 2, 08950 Esplugues,巴塞罗那,西班牙 8 CIBER de Epidemiología y Salud Pública III,Instituto de Salud,28, 101. 29 马德里,西班牙 * 通讯作者:marctahita@yahoo.fr;电话:+226-78809556
摘要。通过恶性疟原虫 (P. falciparum) 富含组氨酸的蛋白质 2 (pfhrp2) 基因缺失而导致的诊断逃逸是全球消除疟疾工作的主要潜在障碍。我们调查了印度奥里萨邦 15 个疟疾流行村 pfhrp2 基因缺失的流行情况,并模拟了它们对正在进行的国内疟疾干预计划的影响。我们发现 61.6% 的亚潜伏性恶性疟原虫感染(即快速诊断测试 [RDT] 阴性和聚合酶链反应 [PCR] 阳性)有 pfhrp2 基因缺失,这些缺失主要位于外显子 2 区域(96.2%),并且主要在发热个体的样本中发现(82.6%)。在携带完整 pfhrp2 外显子 2 基因座的亚专利感染个体样本子集中,我们对 DNA 测序和蛋白质多样性特征进行了表征。我们的分析揭示了新的氨基酸重复基序(231 – 293 个氨基酸),这些变异重复序列与 RDT 1 /PCR 1 样本的重复序列不同。我们还在 pfhrp2 基因缺失的背景下评估了国家资助的大规模筛查和治疗干预。我们发现,与单独进行 RDT 治疗相比,大规模筛查和治疗结合其他干预措施(例如分发长效杀虫蚊帐、室内滞留喷洒)降低了携带 pfhrp2 缺失的恶性疟原虫(调整后的相对风险比 [aRRR] = 0.3;95% CI = 0.1 – 1.0)和携带完整 pfhrp2 基因的恶性疟原虫(aRRR = 0.4;95% CI = 0.2 – 1.1)的相对感染风险。总之,我们的研究结果强调,在印度朝着 2030 年消除疟疾的目标迈进之际,需要替代的诊断目标和工具。
疟疾主要由恶性疟原虫引起,仍然是一个严重的公共卫生问题,因此需要开发新的抗疟药物。恶性疟原虫热休克蛋白 90 (Hsp90) 对寄生虫的生存不可或缺,也是一种很有前途的药物靶点。针对 N 端结构域的 ATP 结合口袋的抑制剂具有抗疟原虫作用。我们提出了一种从头主动学习 (AL) 驱动的方法,结合对接来预测具有独特支架和对 PfHsp90 优先选择性的抑制剂。预测在 ATP 结合口袋处与 PfHsp90 结合并具有抗疟原虫活性的参考化合物被用于生成 10,000 种独特衍生物并建立自动定量结构活性关系 (QSAR) 模型。进行滑动对接以预测衍生物和从 ChEMBL 数据库获得的 15,000 多种化合物的对接得分。对模型进行反复训练和测试,直到最佳的基于 Kennel 的偏最小二乘 (KPLS) 回归模型达到收敛,该模型的训练集回归系数 R2 = 0.75,测试集的平方相关预测 Q2 = 0.62。使用诱导拟合对接和分子动力学模拟重新评分使我们能够优先考虑 15 种 ATP/ADP 类设计理念以供购买。这些化合物对恶性疟原虫 NF54 菌株表现出中等活性,IC 50 值为 ÿ 6 μ M,对 PfHsp90 表现出中等至弱亲和力(KD 范围:13.5–19.9 μ M),与报道的 ADP 亲和力相当。最有效的化合物是 FTN-T5(PfN54 IC 50:1.44 μ M;HepG2/CHO 细胞 SI ÿ 29),它以中等亲和力(KD:7.7 μ M)与 PfHsp90 结合,为优化工作提供了起点。我们的工作证明了 AL 在快速识别用于药物发现的新分子(即命中识别)方面具有巨大实用性。FTN-T5 的效力对于设计物种选择性抑制剂以开发更有效的抗疟药物至关重要。
Claire Sayers,1、2、3 Vikash Pandey,1、2 Arjun Balakrishnan,1、2 Katharine Michie,4 Dennis Svedberg,5、7 Mirjam Hunziker,1、2 Mercedes Pardo,6 Jyoti Choudhary,6 Ronnie Berntsson,5、7 和 Oliver Billker 1、2、8、* 1 瑞典分子感染医学实验室,于默奥大学,于默奥,瑞典 2 于默奥大学分子生物学系,于默奥,瑞典 3 新南威尔士大学生物医学学院,悉尼,新南威尔士州,澳大利亚 4 新南威尔士大学 Mark Wainwright 分析中心,悉尼,新南威尔士州,澳大利亚 5 于默奥大学医学生物化学和生物物理学系,于默奥,瑞典 6 癌症研究所研究,英国伦敦 Chester Beatty 实验室 7 瑞典于默奥大学瓦伦堡分子医学中心 8 主要联系人 *通信地址:oliver.billker@umu.se https://doi.org/10.1016/j.cels.2024.10.008
摘要 引言 疟疾分子监测有可能产生有关影响抗疟干预效果的生物威胁的信息。本研究旨在简化监测活动,为莫桑比克国家疟疾控制计划(2023-2030 年)控制和消除疟疾的新战略计划提供信息。 方法与分析 这项前瞻性基因组监测研究旨在生成恶性疟原虫基因数据,以监测由于 pfhrp2/3 缺失和抗疟药物耐药性分子标记导致的诊断失败,确定传播源并为莫桑比克即将引入的新型抗疟方法(化学预防和儿童疟疾疫苗接种)的实施提供信息。该研究将于 2024 年至 2026 年期间进行,将采用三种抽样方案:在该国 10 个省进行多集群概率卫生设施调查,以检测 pfhrp2/3 缺失和抗疟药物耐药性标志物;对南部旨在消除疟疾的代表地区的所有临床病例进行密集抽样,以确定疟疾输入特征和传播源;并在孕妇首次产前保健就诊时对她们进行疟疾检测,以评估疟疾负担和分子趋势。该研究采用多重扩增子测序方法,针对提供基因组多样性和相关性信息的微单倍型,以及关键的耐药性相关基因、pfhrp2/3 缺失和疟疾疫苗目标。关键基因组信息将以可视化方式显示在仪表板中,该仪表板集成到基于区域卫生信息系统 V.2 的疟疾信息存储系统中,供程序使用。伦理与传播该方案由莫桑比克国家伦理委员会 (Comité Nacional de Bioética para Saúde,编号:680/CNBS/23) 审查和批准。项目结果将使用研究专用手册向所有利益相关者展示,并发表在开放获取期刊上。试验注册号 NCT06529237。
开放存取本文采用知识共享署名4.0国际许可证,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可证的链接,并表明是否做了更改。本文中的图像或其他第三方资料包含在文章的知识共享许可证中,除非在资料的致谢中另有说明。如果资料未包含在文章的知识共享许可证中,并且您的预期用途不被法定规定允许或超出了允许的用途,您将需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/。